Unorganized Machines to Estimate the Number of Hospital Admissions Due to Respiratory Diseases Caused by PM10 Concentration
Abstract
:1. Introduction
2. Unorganized Machines
2.1. Extreme Learning Machines
2.2. Echo State Networks
2.3. Regularization Parameter
2.4. Nonlinear Output Layer
3. Case Studies
4. Results and Critical Analysis
- Standard single models: Three versions are developed considering the Standard Models presented in Section 2.1 and Section 2.2. The Extreme Learning Machine (ELM), the Echo State Network from Jaeger et al. [29] (ESN J.) and the Echo State Network from Ozturk et al. [44] (ESN O.);
- Regularization Parameter: All standard models are extended, producing three other models through regularization parameter concepts presented in Section 2.3. The ELM with Regularization Parameter (ELM–RP), the ESN J. with Regularization Parameter (ESN J.–RP) and the ESN O. with Regularization Parameter (ESN O.–RP);
- Nonlinear Output Layers: Similarly, three more models are proposed considering the concepts in Section 2.4. The Nonlinear Output Layers strategy is applied to the three single forms creating the ELM with Volterra Filtering Structure (ELM Volt), the ESN J. with Volterra Filtering Structure (ESN J. Volt), and the ESN O. with Volterra Filtering Structure (ESN O. Volt).
- The number of artificial neurons in the hidden layer (or dynamic reservoir) of each model was determined considering a grid search ranging from 3 to 450 neurons;
- The weights were randomly generated in the interval ;
- The hyperbolic tangent was addressed as the activation function of the hidden layers;
- The samples were normalized in the interval before the neural processing;
- The models with RP strategy considered the holdout cross-validation;
- The reservoir designed by Ozturk et al. considered a spectral radius of 0.95 [44];
- Before the calculation of the errors, the original domain data was re-scaled.
Authors (Year) | Geographic Area of Study | Inputs | Predicted Variable | Methods | Used Metrics | Time Base | Best MAPE | Best RMSE |
---|---|---|---|---|---|---|---|---|
Kassomenos et al. (2011) [24] | Athens | T, RH, WD, SO, black smoke CO, NO, NO, O | HA for Cardiorespiratory diseases | MLP, GLM | RMSE | daily | NA | 0.8950 |
Moustris et al. (2012) [63] | Athens | T, RH, WS, solar radiation SO, PM, CO, O, NO (age subgroups 0–4 years, 5–14 years, 0–14 years) | HA for Asthma | MLP (TLRN) | MBE, RMSE, R, IA | daily | NA | 3.2 |
Cengiz and Terzi (2012) [65] | Afyon, Turkey | SO, PM | HA and symptoms (cough, exertional, dyspnea, expectoration) for COPD | MLP, RBF, GLM, GAM | RMSE e MAPE | weekly | 4.54 | 2.38 |
Shakerkhatibi et al. (2015) [64] | Tabriz, Iran | T, RH, NO, NO, NO, SO, CO, PM, O (age and gender subgroups) | HA for respiratory and cardiovascular diseases | MLP, CLR | AUC, sensitivity, Specificity and Accuracy (%) | daily | NA | NA |
Khatri and Tamil (2017) [62] | Dallas County, Texas, USA | T, RH, WS, CO, O, SO, NO, PM | HE for respiratory diseases | MLP | % difference | daily | NA | NA |
Tadano et al. (2016) [26] | Campinas city, São Paulo state, Brazil | T, RH, PM | HA for respiratory diseases | MLP, ESN, ELM | MSE/MAPE | daily | 31.2 | 5.98 |
Polezer et al. (2018) [10] | Curitiba, Paraná, Brazil | T, RH, PM | HA for respiratory diseases | MLP, ESN, ELM | MSE/MAPE | daily | 29.87 | 7.37 |
Araujo et al. (2020) [17] | Campinas and São Paulo cities, Brazil | T, RH, PM | HA for respiratory diseases | MLP, GLM, ELM, ESN, RBF, Ensemble | MSE, MAE, MAPE | daily | 24.87 | 3.04 |
Zhou, Li and Wang (2018) [66] | Hangzhou, Southern part of the Yangtze River Delta, China | T, PM, PM, NO, SO | Respiratory disease cases | MLP, GAM | AIC, MSE | daily | NA | 2.17 |
Kachba et al. (2020) [18] | São Paulo city, Brazil | CO, NO, O, SO, PM | HA and mortality for respiratory diseases | MLP, ELM, ESN | MSE, MAE, MAPE | monthly | 34.53 | 160.26 |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO-World Health Organization. Ambient Air Pollution: Health Impacts; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, X. Effects of PM2.5 on chronic airway diesases: A review of research progress. Atmosphere 2021, 12, 1068. [Google Scholar] [CrossRef]
- Ab Manan, N.; Aizuddin, A.N.; Hod, R. Effect of air pollution and hospital admission: A systematic review. Ann. Glob. Health 2018, 84, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigorieva, E.; Lukyanets, A. Combined effect of hot weather and outdoor air pollution on respiratory health: Literature review. Atmosphere 2021, 12, 790. [Google Scholar] [CrossRef]
- Morrissey, K.; Chung, I.; Morse, A.; Parthasarath, S.; Roebuck, M.M.; Tan, M.P.; Wood, A.; Wong, P.F.; Forstick, S.P. The effects of air quality on hospital admissions for chronic respiratory diseases in Petaling Jaya, Malaysia, 2013–2015. Atmosphere 2021, 12, 1060. [Google Scholar] [CrossRef]
- Yitshak-Sade, M.; Nethery, R.; Schwartz, J.D.; Mealli, F.; Dominici, F.; Di, Q.; Awad, Y.A.; Ifergane, G.; Zanobetti, A. PM2.5 and hospital admissions among Medicare enrollees with chronic debilitating brain disorders. Sci. Total Environ. 2021, 755, 142524. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Polezer, G.; Tadano, Y.S.; Siqueira, H.V.; Godoi, A.F.; Yamamoto, C.I.; de André, P.A.; Pauliquevis, T.; de Fatima Andrade, M.; Oliveira, A.; Saldiva, P.H.; et al. Assessing the impact of PM 2.5 on respiratory disease using artificial neural networks. Environ. Pollut. 2018, 235, 394–403. [Google Scholar] [CrossRef]
- Ardiles, L.G.; Tadano, Y.S.; Costa, S.; Urbina, V.; Capucim, M.N.; da Silva, I.; Braga, A.; Martins, J.A.; Martins, L.D. Negative binomial regression model for analysis of the relationship between hospitalization and air pollution. Atmos. Pollut. Res. 2018, 9, 333–341. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Routledge: London, UK, 2019. [Google Scholar]
- Belotti, J.T.; Castanho, D.S.; Araujo, L.N.; da Silva, L.V.; Alves, T.A.; Tadano, Y.S.; Stevan, S.L., Jr.; Correa, F.C.; Siqueira, H.V. Air Pollution Epidemiology: A Simplified Generalized Linear Model Approach Optimized by Bio-Inspired Metaheuristics. Environ. Res. 2020, 191, 110106. [Google Scholar] [CrossRef] [PubMed]
- Cromar, K.; Galdson, L.; Palomera, M.J.; Perlmutt, L. Development of a health-based index to indentify the association between air pollution and health effects in Mexico City. Atmosphere 2021, 12, 372. [Google Scholar] [CrossRef]
- Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Geng, H.; Dong, C.; Bai, T. The short-term harvesting effects of ambient particulate matter on mortality in Taiyuan elderly residents: A time-series analysis with a generalized additive distributed lag model. Ecotoxicol. Environ. Saf. 2021, 207, 111235. [Google Scholar] [CrossRef]
- Araujo, L.N.; Belotti, J.T.; Antonini Alves, T.; de Souza Tadano, Y.; Siqueira, H. Ensemble method based on Artificial Neural Networks to estimate air pollution health risks. Environ. Model. Softw. 2020, 123, 104567. [Google Scholar] [CrossRef]
- Kachba, Y.; Chiroli, D.M.d.G.; Belotti, J.T.; Antonini Alves, T.; de Souza Tadano, Y.; Siqueira, H. Artificial Neural Networks to Estimate the Influence of Vehicular Emission Variables on Morbidity and Mortality in the Largest Metropolis in South America. Sustainability 2020, 12, 2621. [Google Scholar] [CrossRef] [Green Version]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- de Mattos Neto, P.S.; Madeiro, F.; Ferreira, T.A.; Cavalcanti, G.D. Hybrid intelligent system for air quality forecasting using phase adjustment. Eng. Appl. Artif. Intell. 2014, 32, 185–191. [Google Scholar] [CrossRef]
- Feng, R.; Zheng, H.J.; Gao, H.; Zhang, A.R.; Huang, C.; Zhang, J.X.; Luo, K.; Fan, J.R. Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: A case study in Hangzhou, China. J. Clean. Prod. 2019, 231, 1005–1015. [Google Scholar] [CrossRef]
- Neto, P.S.D.M.; Firmino, P.R.A.; Siqueira, H.; Tadano, Y.D.S.; Alves, T.A.; De Oliveira, J.F.L.; Marinho, M.H.D.N.; Madeiro, F. Neural-Based Ensembles for Particulate Matter Forecasting. IEEE Access. 2021, 9, 14470–14490. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Pan, X. Atmosphere pollutants and mortality rate of respiratory diseases in Beijing. Sci. Total Environ. 2008, 391, 143–148. [Google Scholar] [CrossRef]
- Kassomenos, P.; Petrakis, M.; Sarigiannis, D.; Gotti, A.; Karakitsios, S. Identifying the contribution of physical and chemical stressors to the daily number of hospital admissions implementing an artificial neural network model. Air Qual. Atmos. Health 2011, 4, 263–272. [Google Scholar] [CrossRef]
- Sundaram, N.M.; Sivanandam, S.; Subha, R. Elman neural network mortality predictor for prediction of mortality due to pollution. Int. J. Appl. Eng. Res 2016, 11, 1835–1840. [Google Scholar]
- Tadano, Y.S.; Siqueira, H.V.; Antonini Alves, T. Unorganized machines to predict hospital admissions for respiratory diseases. In Proceedings of the IEEE Latin American Conference on Computational Intelligence (LA-CCI), Cartagena, Colombia, 2–4 November 2016; pp. 1–6. [Google Scholar]
- Boccato, L.; Soares, E.S.; Fernandes, M.M.L.P.; Soriano, D.C.; Attux, R. Unorganized Machines: From Turing’s Ideas to Modern Connectionist Approaches. Int. J. Nat. Comput. Res. (IJNCR) 2011, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Ger. Ger. Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 2001, 148, 13. [Google Scholar]
- Jaeger, H. Short term memory in Echo State Networks; Technical Report; Fraunhofer Institute for Autonomous Intelligent Systems: Sankt Augustin, Germany, 2001. [Google Scholar]
- Siqueira, H.V.; Boccato, L.; Attux, R.; Lyra Filho, C. Echo state networks in seasonal streamflow series prediction. Learn. Nonlinear Model. 2012, 10, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 2011, 42, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Boccato, L.; Lopes, A.; Attux, R.; Von Zuben, F.J. An extended echo state network using Volterra filtering and principal component analysis. Neural Networks Off. J. Int. Neural Netw. Soc. 2012, 32, 292–302. [Google Scholar] [CrossRef]
- Butcher, J.; Verstraeten, D.; Schrauwen, B.; Day, C.; Haycock, P. Extending reservoir computing with random static projections: A hybrid between extreme learning and RC. In Proceedings of the 18th European sSymposium on Artificial Neural Networks, Bruges, Belgium, 28–30 April 2010. [Google Scholar]
- Yildiz, I.B.; Jaeger, H.; Kiebel, S. Re-visiting the echo state property. Neural Netw. 2012, 35, 1–9. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.; Chen, L.; Siew, C. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Lin, Z.; Huang, G.B.; Liu, N. Voting based extreme learning machine. Inf. Sci. 2012, 185, 66–77. [Google Scholar] [CrossRef]
- Siqueira, H.; Luna, I. Performance comparison of feedforward neural networks applied to streamflow series forecasting. Math. Eng. Sci. Aerosp. (MESA) 2019, 10, 41–53. [Google Scholar]
- Bartlett, P. The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important than the Size of the Network. IEEE Trans. Inf. Theory 1998, 44, 525–536. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gao, C.; Li, P. A comparative analysis of support vector machines and extreme learning machines. Neural Netw. 2012, 33, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, H.; Boccato, L.; Attux, R.; Lyra, C. Echo state networks and extreme learning machines: A comparative study on seasonal streamflow series prediction. In Proceedings of the International Conference on Neural Information Processing, Doha, Qatar, 12–15 November 2012; pp. 491–500. [Google Scholar]
- Lukosevicius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Ozturk, M.C.; Xu, D.; Príncipe, J.C. Analysis and design of Echo State Networks. Neural Comput. 2007, 19, 111–138. [Google Scholar] [CrossRef]
- Kulaif, A.C.P.; Von Zuben, F.J. Improved regularization in extreme learning machines. In Proceedings of the 11th Brazilian Congress on Computational Intelligence Porto de Galinhas, Pernambuco, Brazil, 8–11 September 2013; Volume 1, pp. 1–6. [Google Scholar]
- Hashem, S. Optimal linear combinations of neural networks. Neural Netw. 1997, 10, 599–614. [Google Scholar] [CrossRef]
- Siqueira, H.; Boccato, L.; Attux, R.; Lyra, C. Unorganized machines for seasonal streamflow series forecasting. Int. J. Neural Syst. 2014, 24, 1430009. [Google Scholar] [CrossRef]
- Joe, H.; Kurowicka, D. Dependence Modeling: Vine Copula Handbook; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011. [Google Scholar]
- Toly Chen, Y.C.W. Long-term load forecasting by a collaborative fuzzy-neural approach. Int. J. Electr. Power Energy Syst. 2012, 43, 454–464. [Google Scholar] [CrossRef]
- CETESB-Environmental Sanitation Technology Company. Qualidade do ar no Estado de São Paulo, 2020. Available online: https://cetesb.sp.gov.br/ar/publicacoes-relatorios (accessed on 27 June 2021). (In Portuguese)
- Datasus-Department of Informatics of the Unique Health System. SIHSUS Reduzida-Ministry of Health, Brazil. Available online: http://www2.datasus.gov.br/DATASUS/index.php?area=0701&item=1&acao=11 (accessed on 1 July 2020).
- IBGE-Brazilian Institute of Geography and Statistics (in Portuguese: Instituto Brasileiro de Geografia e Estatística. Censo 2010. 2021. Available online: https://censo2010.ibge.gov.br/ (accessed on 27 July 2021).
- Agrawal, S.B.; Agrawal, M. Environmental Pollution and Plant Responses; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Tadano, Y.S.; Ugaya, C.M.L.; Franco, A.T. Methodology to assess air pollution impact on human health using the generalized linear model with Poisson Regression. In Air Pollution-Monitoring, Modelling and Health; InTech: São Paulo, Brazil, 2012. [Google Scholar]
- Li, Y.; Ma, Z.; Zheng, C.; Shang, Y. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM 2.5 in Beijing, China. Int. J. Biometeorol. 2015, 59, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- WHO-World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide-Global Update 2005-Summary of Risk Assessment, 2006; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Haykin, S.S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Siqueira, H.; Boccato, L.; Luna, I.; Attux, R.; Lyra, C. Performance analysis of unorganized machines in streamflow forecasting of Brazilian plants. Appl. Soft Comput. 2018, 68, 494–506. [Google Scholar] [CrossRef]
- Cuzick, J. A Wilcoxon-type test for trend. Stat. Med. 1985, 4, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Tadano, Y.S.; Potgieter-Vermaak, S.; Kachba, Y.R.; Chiroli, D.M.; Casacio, L.; Santos-Silva, J.C.; Moreira, C.A.; Machado, V.; Alves, T.A.; Siqueira, H.; et al. Dynamic model to predict the association between air quality, COVID-19 cases, and level of lockdown. Environ. Pollut. 2021, 268, 115920. [Google Scholar] [CrossRef]
- Khatri, K.L.; Tamil, L.S. Early detection of peak demand days of chronic respiratory diseases emergency department visits using artificial neural networks. IEEE J. Biomed. Health Inform. 2017, 22, 285–290. [Google Scholar] [CrossRef]
- Moustris, K.P.; Douros, K.; Nastos, P.T.; Larissi, I.K.; Anthracopoulos, M.B.; Paliatsos, A.G.; Priftis, K.N. Seven-days-ahead forecasting of childhood asthma admissions using artificial neural networks in Athens, Greece. Int. J. Environ. Health Res. 2012, 22, 93–104. [Google Scholar] [CrossRef]
- Shakerkhatibi, M.; Dianat, I.; Jafarabadi, M.A.; Azak, R.; Kousha, A. Air pollution and hospital admissions for cardiorespiratory diseases in Iran: Artificial neural network versus conditional logistic regression. Int. J. Environ. Sci. Technol. 2015, 12, 3433–3442. [Google Scholar] [CrossRef] [Green Version]
- Cengiz, M.A.; Terzi, Y. Comparing models of the effect of air pollutants on hospital admissions and symptoms for chronic obstructive pulmonary disease. Cent. Eur. J. Public Health 2012, 20, 282. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Wu, D.; Li, Y.; Wang, B. Relationship Between Air Pollutants and Outpatient Visits for Respiratory Diseases in Hangzhou. In Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education (ITME), Hangzhou, China, 19–21 October 2018; pp. 275–280. [Google Scholar]
City | Variable | Average | S. Deviation | Min. | Max. |
---|---|---|---|---|---|
São Paulo | RD | 144.0 | 54.7 | 9.0 | 409.0 |
PM[g/m] | 28.6 | 14.0 | 5.0 | 97.0 | |
Temperature [C] | 20.7 | 3.6 | 9.9 | 28.9 | |
Humidity [%] | 48.6 | 16.1 | 15.0 | 93.0 | |
Campinas | RD | 16.0 | 6.0 | 3.0 | 37.0 |
PM[g/m] | 21.5 | 11.3 | 3.0 | 84.0 | |
Temperature [C] | 28.5 | 3.9 | 16.6 | 37.0 | |
Humidity [%] | 42.4 | 14.4 | 14.0 | 90.0 | |
Cubatão | RD | 1.0 | 1.0 | 0.0 | 8.0 |
PM[g/m] | 37.6 | 17.9 | 11.0 | 148.0 | |
Temperature [C] | 27.1 | 4.3 | 16.0 | 40.3 | |
Humidity [%] | 63.5 | 16.8 | 19.0 | 97.0 |
VIF | Cubatão | Campinas | São Paulo |
---|---|---|---|
PM | 1.1581 | 1.5779 | 1.6365 |
Relative Humidity | 1.9392 | 2.2771 | 1.8703 |
Temperature | 1.8825 | 1.5877 | 1.2105 |
LAG 0 | LAG 1 | |||||
Model | NN | RMSE | MAE | NN | RMSE | MAE |
ELM | 250 | 1.5630 | 1.1857 | 300 | 1.4760 | 1.1357 |
ELM(RP) | 350 | 1.5330 | 1.1643 | 320 | 1.4808 | 1.1357 |
ELMVolt | 350 | 2.4202 | 2.0429 | 450 | 2.0942 | 1.7714 |
ESN J. | 320 | 1.6058 | 1.2643 | 450 | 1.5789 | 1.1929 |
ESNJ.(RP) | 450 | 1.5879 | 1.2357 | 450 | 1.6345 | 1.2571 |
ESNJ.Volt | 70 | 2.3815 | 1.9571 | 35 | 1.8323 | 1.4571 |
ESN O. | 30 | 1.6257 | 1.2143 | 35 | 1.4904 | 1.1429 |
ESNO.(RP) | 200 | 1.6797 | 1.3357 | 450 | 1.7587 | 1.3929 |
ESNO.Volt | 10 | 2.7877 | 2.2286 | 380 | 2.7255 | 2.2429 |
LAG 2 | LAG 3 | |||||
Model | NN | RMSE | MAE | NN | RMSE | MAE |
ELM* | 420 | 1.4417 | 1.1000 | 350 | 1.4663 | 1.1500 |
ELM(RP) | 320 | 1.4343 | 1.0714 | 380 | 1.4467 | 1.1286 |
ELMVolt | 420 | 2.0107 | 1.6929 | 100 | 1.9928 | 1.6571 |
ESN J. | 300 | 1.4344 | 1.1000 | 380 | 1.4417 | 1.1214 |
ESNJ.(RP) | 450 | 1.5142 | 1.1786 | 420 | 1.4541 | 1.1000 |
ESNJ.Volt | 30 | 2.1827 | 1.7071 | 35 | 2.3664 | 1.9143 |
ESN O. | 350 | 1.4760 | 1.1214 | 35 | 1.4880 | 1.1286 |
ESNO.(RP) | 420 | 1.6058 | 1.2357 | 170 | 1.5330 | 1.2071 |
ESNO.Volt | 300 | 2.4900 | 2.0429 | 350 | 2.6227 | 2.2143 |
LAG 4 | LAG 5 | |||||
Model | NN | RMSE | MAE | NN | RMSE | MAE |
ELM | 250 | 1.5071 | 1.1714 | 420 | 1.5353 | 1.1571 |
ELM(RP) | 250 | 1.5024 | 1.1786 | 400 | 1.5306 | 1.1643 |
ELMVolt | 280 | 2.3890 | 1.9929 | 380 | 2.5114 | 2.1500 |
ESN J. | 420 | 1.5142 | 1.1929 | 350 | 1.5561 | 1.1714 |
ESNJ.(RP) | 450 | 1.5189 | 1.1643 | 350 | 1.5561 | 1.2214 |
ESNJ.Volt | 70 | 2.2960 | 1.8714 | 35 | 2.5746 | 2.1500 |
ESN O. | 380 | 1.6013 | 1.2786 | 70 | 1.5766 | 1.1571 |
ESNO.(RP) | 380 | 1.5561 | 1.2071 | 250 | 1.6191 | 1.2500 |
ESNO.Volt | 50 | 2.3770 | 2.0500 | 30 | 2.4275 | 1.9643 |
LAG 6 | LAG 7 | |||||
Model | NN | RMSE | MAE | NN | RMSE | MAE |
ELM | 250 | 1.4516 | 1.1500 | 350 | 1.5811 | 1.2286 |
ELM(RP) | 320 | 1.5515 | 1.1929 | 200 | 1.5376 | 1.2000 |
ELMVolt | 450 | 2.4640 | 2.1429 | 450 | 2.4928 | 2.1643 |
ESN J. | 170 | 1.6903 | 1.3429 | 450 | 1.5306 | 1.2214 |
ESNJ.(RP) | 420 | 1.5584 | 1.2429 | 420 | 1.5834 | 1.2571 |
ESNJ.Volt | 40 | 2.3634 | 2.0429 | 70 | 2.2409 | 1.8786 |
ESN O. | 40 | 1.5142 | 1.1714 | 35 | 1.5811 | 1.2429 |
ESNO.(RP) | 250 | 1.6410 | 1.3357 | 200 | 1.5969 | 1.3071 |
ESNO.Volt | 300 | 2.8322 | 2.2143 | 50 | 2.6390 | 2.1071 |
LAG 0 | LAG 1 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 25 | 6.9017 | 5.6479 | 40.2496 | 3 | 5.5462 | 4.4507 | 36.9895 |
ELM(RP) | 3 | 5.1094 | 3.9648 | 32.7044 | 25 | 7.0751 | 5.7324 | 40.8537 |
ELMVolt | 25 | 7.0206 | 5.2676 | 37.2186 | 10 | 5.3910 | 4.1338 | 34.4946 |
ESN J. | 35 | 6.9394 | 5.6620 | 40.0763 | 50 | 6.6619 | 5.4085 | 41.5375 |
ESNJ.(RP) | 3 | 6.4306 | 5.0563 | 50.5484 | 3 | 6.4731 | 5.0845 | 51.6402 |
ESNJ.Volt | 380 | 6.3540 | 4.8803 | 46.8265 | 3 | 5.2393 | 3.9577 | 33.7701 |
ESN O. | 15 | 5.8713 | 4.6127 | 39.4574 | 30 | 6.4878 | 5.2465 | 40.5271 |
ESNO.(RP) | 3 | 6.2473 | 4.9014 | 49.1485 | 7 | 6.6327 | 5.2324 | 52.7208 |
ESNO.Volt | 3 | 5.6438 | 4.3873 | 33.9491 | 3 | 5.8743 | 4.6127 | 34.6702 |
LAG 2 | LAG 3 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 15 | 6.4464 | 5.1972 | 38.4853 | 3 | 5.0644 | 4.0282 | 31.9037 |
ELM(RP) | 3 | 5.4721 | 4.3662 | 33.0808 | 25 | 6.6072 | 5.1761 | 39.8549 |
ELMVolt | 25 | 5.9517 | 4.4507 | 38.5412 | 170 | 6.2020 | 4.6268 | 41.3376 |
ESN J.* | 30 | 6.4114 | 5.0915 | 41.0724 | 70 | 6.1260 | 4.7113 | 38.2705 |
ESNJ.(RP)* | 3 | 6.2258 | 4.7887 | 48.3773 | 10 | 6.2196 | 4.9296 | 49.2648 |
ESNJ.Volt* | 3 | 5.7684 | 4.4859 | 35.2526 | 30 | 5.7101 | 4.2817 | 38.4659 |
ESNO.* | 25 | 6.2557 | 4.9085 | 39.6942 | 100 | 6.2905 | 4.8310 | 37.4986 |
ESNO.(RP)* | 10 | 6.0630 | 4.6761 | 46.9116 | 5 | 6.3207 | 4.9577 | 49.5265 |
ESNO.Volt* | 7 | 5.7648 | 4.3592 | 40.2773 | 450 | 6.1633 | 4.8732 | 42.5624 |
LAG 4 | LAG 5 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 3 | 5.7403 | 4.4648 | 32.2381 | 3 | 5.2928 | 4.0845 | 33.6603 |
ELM(RP) | 20 | 6.6003 | 5.0986 | 37.0427 | 3 | 5.3200 | 4.1056 | 34.3353 |
ELMVolt | 25 | 5.7885 | 4.4085 | 34.7377 | 30 | 5.9511 | 4.7394 | 37.2746 |
ESN J. | 70 | 6.2054 | 4.7746 | 36.7789 | 35 | 6.1070 | 4.7042 | 36.9522 |
ESNJ.(RP) | 30 | 6.3184 | 4.9859 | 48.8737 | 3 | 6.1254 | 4.7183 | 46.9130 |
ESNJ.Volt | 35 | 5.2682 | 4.1056 | 33.8667 | 3 | 5.8934 | 4.6479 | 35.1359 |
ESN O. | 120 | 6.2776 | 4.8310 | 36.6999 | 200 | 6.3745 | 4.9859 | 38.5786 |
ESNO.(RP) | 7 | 5.9935 | 4.6831 | 46.2167 | 10 | 6.2377 | 4.8239 | 47.9457 |
ESNO.Volt | 3 | 5.9570 | 4.3028 | 36.7693 | 3 | 5.4521 | 4.3732 | 34.0759 |
LAG 6 | LAG 7 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 3 | 5.3068 | 4.1972 | 36.8548 | 35 | 7.2452 | 5.6761 | 42.0235 |
ELM(RP) | 3 | 5.2474 | 4.0704 | 36.8444 | 35 | 7.2384 | 5.6761 | 42.0908 |
ELMVolt | 25 | 5.3253 | 4.2465 | 35.6237 | 70 | 5.1273 | 4.0930 | 38.2203 |
ESN J. | 30 | 6.2360 | 4.9930 | 39.2345 | 50 | 6.6961 | 5.1620 | 41.5200 |
ESNJ.(RP) | 5 | 5.9741 | 4.6901 | 44.9676 | 3 | 5.8928 | 4.6549 | 45.2283 |
ESNJ.Volt | 3 | 5.7873 | 4.4930 | 35.0669 | 3 | 6.0082 | 4.8169 | 34.6062 |
ESN O. | 35 | 6.3987 | 5.0563 | 39.7110 | 50 | 6.4579 | 4.8732 | 39.7276 |
ESNO.(RP) | 5 | 5.9487 | 4.5000 | 44.5221 | 5 | 5.9871 | 4.6620 | 45.6153 |
ESNO.Volt | 3 | 5.6519 | 4.4014 | 35.8808 | 3 | 5.6687 | 4.2746 | 37.4182 |
LAG 0 | LAG 1 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 25 | 61.1156 | 51.141 | 43.4189 | 3 | 39.7697 | 30.7821 | 36.1940 |
ELM(RP) | 15 | 55.2425 | 46.4231 | 41.1963 | 20 | 59.1541 | 48.3205 | 40.3268 |
ELMVolt | 10 | 60.8374 | 48.2179 | 48.3650 | 20 | 72.4500 | 58.7179 | 57.4171 |
ESN J. | 420 | 62.4953 | 51.3910 | 42.4775 | 100 | 62.1230 | 50.4167 | 42.4388 |
ESNJ.(RP) | 450 | 67.7300 | 55.0449 | 70.2352 | 450 | 67.6519 | 55.0769 | 69.8433 |
ESNJ.Volt | 400 | 66.9744 | 54.0705 | 64.0419 | 3 | 51.2727 | 40.5833 | 43.2995 |
ESN O. | 50 | 58.7160 | 48.3141 | 39.7660 | 50 | 58.1013 | 45.9679 | 40.5099 |
ESNO.(RP) | 380 | 69.2728 | 56.6154 | 71.5779 | 350 | 68.8875 | 55.8526 | 71.2675 |
ESNO.Volt | 3 | 57.8689 | 46.5064 | 45.7923 | 3 | 59.6593 | 45.7628 | 50.0376 |
LAG 2 | LAG 3 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 3 | 39.3745 | 31.2628 | 36.9582 | 25 | 59.9251 | 48.2308 | 45.2785 |
ELM(RP) | 20 | 60.6640 | 48.2115 | 41.4840 | 3 | 43.9040 | 35.1026 | 35.9396 |
ELMVolt | 25 | 83.6339 | 69.4423 | 68.6818 | 20 | 71.2603 | 55.4679 | 57.0193 |
ESN J. | 70 | 60.7151 | 49.1154 | 42.8314 | 100 | 64.7131 | 52.4423 | 48.2804 |
ESNJ.(RP) | 450 | 65.7486 | 53.6795 | 68.8934 | 400 | 65.3756 | 53.0064 | 69.0983 |
ESNJ.Volt | 3 | 59.2428 | 43.6090 | 46.8035 | 3 | 58.6061 | 44.1795 | 43.8522 |
ESN O. | 35 | 58.6986 | 47.4103 | 40.7649 | 15 | 50.4066 | 39.3910 | 41.1334 |
ESNO.(RP) | 420 | 68.1032 | 55.3974 | 70.3439 | 400 | 67.3167 | 54.4936 | 70.1148 |
ESNO.Volt | 3 | 55.5113 | 43.2628 | 45.1094 | 5 | 58.2715 | 45.4872 | 46.8127 |
LAG 4 | LAG 5 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 15 | 53.6898 | 41.4167 | 43.9006 | 3 | 46.4592 | 37.1474 | 39.0748 |
ELM(RP) | 3 | 45.6739 | 35.9231 | 42.4408 | 3 | 43.6788 | 33.3077 | 38.8188 |
ELMVolt | 7 | 64.8803 | 49.4487 | 56.4511 | 7 | 49.8634 | 39.3974 | 47.2036 |
ESN J. | 450 | 64.3933 | 51.3782 | 47.0148 | 100 | 63.9561 | 51.8141 | 47.3902 |
ESNJ.(RP) | 450 | 65.9862 | 52.4808 | 69.1144 | 380 | 66.2419 | 52.6603 | 68.9928 |
ESNJ.Volt | 380 | 72.9358 | 59.3526 | 64.7092 | 7 | 68.9339 | 55.0513 | 56.2654 |
ESN O. | 15 | 55.3579 | 45.3654 | 44.0190 | 25 | 58.9842 | 45.2051 | 44.8766 |
ESNO.(RP) | 380 | 69.3555 | 55.5513 | 72.2436 | 380 | 68.0724 | 54.3590 | 70.6102 |
ESNO.Volt | 3 | 50.5135 | 40.5833 | 40.8100 | 3 | 53.3191 | 41.0000 | 48.6203 |
LAG 6 | LAG 7 | |||||||
Model | NN | RMSE | MAE | MAPE % | NN | RMSE | MAE | MAPE % |
ELM | 20 | 54.3250 | 43.9744 | 43.4307 | 25 | 55.3315 | 43.9744 | 39.5735 |
ELM(RP) | 3 | 47.3653 | 36.9551 | 39.9839 | 3 | 44.0574 | 35.1923 | 37.5251 |
ELMVolt | 20 | 64.5582 | 46.3654 | 49.4889 | 10 | 75.8567 | 63.5641 | 63.1259 |
ESN J. | 150 | 59.9074 | 49.0641 | 45.4045 | 70 | 58.9236 | 47.3141 | 40.8857 |
ESNJ.(RP) | 380 | 66.0817 | 52.5705 | 68.6722 | 380 | 65.4964 | 52.9615 | 68.4640 |
ESNJ.Volt | 3 | 60.9871 | 45.6859 | 47.4705 | 3 | 62.1758 | 47.5641 | 45.0664 |
ESN O. | 20 | 54.1340 | 43.2756 | 43.7886 | 35 | 51.7540 | 42.4103 | 39.8727 |
ESNO.(RP) | 420 | 68.5719 | 54.7949 | 70.9594 | 320 | 67.4013 | 54.7564 | 70.0246 |
ESNO.Volt | 3 | 57.0886 | 43.9487 | 46.1440 | 3 | 53.9567 | 43.3974 | 44.4320 |
Cubatão (lag 2) | Campinas(lag 3) | São Paulo (lag 2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | RMSE | MAE | RMSE | MAE | MAPE % | RMSE | MAE | MAPE % | Mean | Rank |
ELM | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1st |
ELM(RP) | 1 | 1 | 9 | 9 | 8 | 5 | 5 | 3 | 5.1 | 8th |
ELMVolt | 7 | 7 | 8 | 8 | 9 | 9 | 9 | 7 | 8.0 | 9th |
ESN J. | 3 | 3 | 1 | 1 | 1 | 6 | 6 | 4 | 3.12 | 3rd |
ESNJ.(RP) | 6 | 6 | 1 | 1 | 1 | 7 | 7 | 8 | 4.6 | 6th |
ESNJ.Volt | 8 | 8 | 1 | 1 | 1 | 4 | 3 | 6 | 4.0 | 5th |
ESN O. | 4 | 4 | 1 | 1 | 1 | 3 | 4 | 2 | 2.5 | 2nd |
ESNO.(RP) | 5 | 5 | 1 | 1 | 1 | 8 | 8 | 9 | 4.8 | 7th |
ESNO.Volt | 9 | 9 | 1 | 1 | 1 | 2 | 2 | 5 | 3.8 | 4th |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadano, Y.d.S.; Bacalhau, E.T.; Casacio, L.; Puchta, E.; Pereira, T.S.; Antonini Alves, T.; Ugaya, C.M.L.; Siqueira, H.V. Unorganized Machines to Estimate the Number of Hospital Admissions Due to Respiratory Diseases Caused by PM10 Concentration. Atmosphere 2021, 12, 1345. https://doi.org/10.3390/atmos12101345
Tadano YdS, Bacalhau ET, Casacio L, Puchta E, Pereira TS, Antonini Alves T, Ugaya CML, Siqueira HV. Unorganized Machines to Estimate the Number of Hospital Admissions Due to Respiratory Diseases Caused by PM10 Concentration. Atmosphere. 2021; 12(10):1345. https://doi.org/10.3390/atmos12101345
Chicago/Turabian StyleTadano, Yara de Souza, Eduardo Tadeu Bacalhau, Luciana Casacio, Erickson Puchta, Thomas Siqueira Pereira, Thiago Antonini Alves, Cássia Maria Lie Ugaya, and Hugo Valadares Siqueira. 2021. "Unorganized Machines to Estimate the Number of Hospital Admissions Due to Respiratory Diseases Caused by PM10 Concentration" Atmosphere 12, no. 10: 1345. https://doi.org/10.3390/atmos12101345
APA StyleTadano, Y. d. S., Bacalhau, E. T., Casacio, L., Puchta, E., Pereira, T. S., Antonini Alves, T., Ugaya, C. M. L., & Siqueira, H. V. (2021). Unorganized Machines to Estimate the Number of Hospital Admissions Due to Respiratory Diseases Caused by PM10 Concentration. Atmosphere, 12(10), 1345. https://doi.org/10.3390/atmos12101345