Machine Learning-Based Front Detection in Central Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Digitalization of DWD Front Maps
2.3. Meteorological Reanalysis
2.4. Machine Learning
2.5. Error Metrics
3. Results
3.1. Variable Importance
3.2. Size of Fronts in Training and Testing
3.3. Surface and Pressure Levels Fields
3.4. Gradients of Meteorological Fields
3.5. Length of Training Period
3.6. Another Case Study
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Schemm, S.; Nisi, L.; Martinov, A.; Leuenberger, D.; Martius, O. On the link between cold fronts and hail in Switzerland. Atmos. Sci. Lett. 2016, 12, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Reeder, M.J.; Spengler, T.; Musgrave, R. Rossby waves, extreme fronts, and wildfires in southeastern Australia. Geophys. Res. Lett. 2015, 42, 2015–2023. [Google Scholar] [CrossRef]
- Taszarek, M.; Pilguj, N.; Orlikowski, J.; Surowiecki, A.; Walczakiewicz, S.; Pilorz, W.; Piasecki, K.; Pajurek, Ł.; Półrolniczak, M. Derecho Evolving from a Mesocyclone—A Study of 11 August 2017 Severe Weather Outbreak in Poland: Event Analysis and High-Resolution Simulation. Mon. Weather. Review 2019, 147, 2283–2306. [Google Scholar] [CrossRef]
- Bjerknes, J.; Solberg, H. Life cycles of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ. 1922, 3, 1–18. [Google Scholar]
- Petterssen, S. Introduction to Meteorology; McGraw-Hill: New York, NY, USA, 1958; pp. 134–152. [Google Scholar]
- Palmen, E.; Newton, C.W. Atmospheric Circulation Systems; Academic Press: New York, NY, USA, 1969; pp. 168–193. [Google Scholar]
- Berry, G.; Reeder, M.J.; Jakob, C. A global climatology of atmospheric fronts. Geophys. Res. Lett. 2011, 38, L04809. [Google Scholar] [CrossRef] [Green Version]
- Catto, J.L.; Jakob, C.; Berry, G.; Nicholls, N. Relating global precipitation to atmospheric fronts. Geophys. Res. Lett. 2012, 39, L10805. [Google Scholar] [CrossRef]
- Catto, J.L.; Pfahl, S. The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos. 2013, 118, 10791–10801. [Google Scholar] [CrossRef] [Green Version]
- Priestley, M.D.K.; Dacre, H.F.; Shaffrey, L.C.; Schemm, S.; Pinto, J.G. The role of secondary cyclones and cyclone families for the North Atlantic storm track and clustering over western Europe. Q. J. R. Meteorol. Soc. 2020, 146, 1184–1205. [Google Scholar] [CrossRef] [Green Version]
- Schemm, S.; Sprenger, M. Frontal-wave cyclogenesis in the North Atlantic—A climatological characterisation. Quart. J. Roy. Meteor. Soc. 2015, 141, 2989–3005. [Google Scholar] [CrossRef] [Green Version]
- Catto, J.L.; Nicholls, N.; Jakob, C.; Shelton, K.L. Atmospheric fronts in current and future climates. Geophys. Res. Lett. 2014, 41, 7642–7650. [Google Scholar] [CrossRef] [Green Version]
- Schemm, S.; Sprenger, M.; Martius, O.; Wernli, H.; Zimmer, M. Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (1979–2014). Geophys. Res. Lett. 2017, 44, 553–561. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://glossary.ametsoc.org/wiki/Front (accessed on 17 September 2021).
- Die ganze Welt in Wetterkarten. Available online: http://www1.wetter3.de/ (accessed on 1 August 2021).
- Dane Publiczne IMGW-PIB. Available online: https://danepubliczne.imgw.pl/datastore (accessed on 1 August 2021).
- Surface Pressure Charts. Available online: https://www.metoffice.gov.uk/weather/maps-and-charts/surface-pressure (accessed on 1 August 2021).
- Europäischer Wetterbericht, 1976-2006, Deutsche Wetterdienst, Offenbach a. Main, Earlier: Tägliche Wetterbericht. Available online: https://www.dwd.de/DE/leistungen/pbfb_verlag_emb/emb.html (accessed on 1 August 2021).
- Berliner Wetterkarte, Der Freien Universität Berlin, Berlin. Available online: https://berliner-wetterkarte.de/ (accessed on 1 August 2021).
- Bulletin Quotidien d’Études de la Météorologie Nationale. Ministère des Travaux Publics, des Transports et du Tourisme, Paris. Available online: https://data.bnf.fr/fr/34404140/bulletin_quotidien_d_etudes_de_la_meteorologie_nationale/ (accessed on 1 August 2021).
- Ullman, D.S.; Cornillon, P.C. Evaluation of Front Detection Methods for Satellite-Derived SST Data Using In Situ Observations. J. Atmos. Ocean. Technol. 2000, 17, 1667–1675. [Google Scholar] [CrossRef]
- Parfitt, R.; Czaja, A.; Seo, H. A simple diagnostic for the detection of atmospheric fronts. Geophys. Res. Lett. 2017, 44, 4351–4358. [Google Scholar] [CrossRef]
- Hewson, T.D. Objective fronts. Met. Apps. 1998, 5, 37–65. [Google Scholar] [CrossRef]
- McCann, D.W.; Whistler, J.P. Problems and solutions for drawing fronts objectively. Met. Apps. 2001, 8, 195–203. [Google Scholar] [CrossRef]
- Simmonds, I.; Keay, K.; Tristam Bye, J.A. Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Clim. 2012, 25, 1945–1962. [Google Scholar] [CrossRef]
- Papritz, L.; Pfahl, S.; Rudeva, I.; Simmonds, I.; Sodemann, H.; Wernli, H. The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. J. Clim. 2014, 27, 6205–6224. [Google Scholar] [CrossRef]
- Hope, P.; Keay, K.; Pook, M.; Catto, J.; Simmonds, I.; Mills, G.; McIntosh, P.; Risbey, J.; Berry, G. A comparison of automated methods of front recognition for climate studies: A case study in southwest Western Australia. Mon. Weather. Rev. 2014, 142, 343–363. [Google Scholar] [CrossRef] [Green Version]
- Schemm, S.; Rudeva, I.; Simmonds, I. Extratropical fronts in the lower troposphere—Global perspectives obtained from two automated methods. Q. J. R. Meteorol. Soc. 2015, 141, 1686–1698. [Google Scholar] [CrossRef]
- Biard, J.C.; Kunkel, K.E. Automated Detection of Weather Fronts Using a Deep Learning Neural Network. Adv. Stat. Climatol. Meteorol. Oceanogr. 2019, 5, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Service, N.W. National Weather Service Coded Surface Bulletins, Bulletin Number 2003; NOAA: Washington, WA, USA, 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Racah, E.; Prabhat; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets. arXiv 2016, arXiv:1605.01156. Available online: https://arxiv.org/abs/1605.01156 (accessed on 1 August 2021).
- Hoinka, K.P. On fronts in central Europe. Beitr. Phys. Atmos. 1985, 58, 560–571. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.J.; Herman, G.R.; Schumacher, R.S. Forecasting Severe Weather with Random Forests. Mon. Weather Rev. 2020, 148, 2135–2161. [Google Scholar] [CrossRef] [Green Version]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauß, T. Precipitation Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Random Forests. J. Appl. Meteorol. Climatol. 2014, 53, 2457–2480. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Milbrandt, J.; Zhou, B. Marine Fog: A Review on Microphysics and Visibility Prediction. In Springer Atmospheric Sciences; Springer: Cham, Switzerland, 2017; pp. 345–394. [Google Scholar] [CrossRef]
- Shan, Y.; Zhang, R.; Gultepe, I.; Zhang, Y.; Li, M.; Wang, Y. Gridded Visibility Products over Marine Environments Based on Artificial Neural Network Analysis. Appl. Sci. 2019, 9, 4487. [Google Scholar] [CrossRef] [Green Version]
- Gaal, M.; Moriondo, M.; Bindi, M. Modelling the impact of climate change on the Hungarian wine regions using Random Forest. Appl. Ecol. Environ. Res. 2012, 10, 121–140. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wang, W.; Melton, F.S.; Moreno, A.L.; Ganguly, S.; Michaelis, A.R.; Nemani, R.R. High-Resolution Mapping of Daily Climate Variables by Aggregating Multiple Spatial Data Sets with the Random Forest Algorithm over the Conterminous United States. Int. J. Climatol. 2019, 39, 2964–2983. [Google Scholar] [CrossRef]
- Bochenek, B.; Jankowski, M.; Gruszczynska, M.; Nykiel, G.; Gruszczynski, M.; Jaczewski, A.; Ziemianski, M.; Pyrc, R.; Figurski, M.; Pinkas, J. Impact of Meteorological Conditions on the Dynamics of the COVID-19 Pandemic in Poland. Int. J. Environ. Res. Public. Health. 2021, 18, 3951. [Google Scholar] [CrossRef]
- Alam, M.Z.; Rahman, M.S.; Rahman, M.S. A Random Forest Based Predictor for Medical Data Classification Using Feature Ranking. Inform. Med. Unlocked 2019, 15, 100180. [Google Scholar] [CrossRef]
- Bilbao, J.; Bravo, E.; Garcia, O.; Varela, C.; Rebollar, C. Particular case of big data for wind power forecasting: Random forest. Int. J. Tech. Phys. Probl. Eng. 2020, 12, 25–30. [Google Scholar]
- Bochenek, B.; Jurasz, J.; Jaczewski, A.; Stachura, G.; Sekuła, P.; Strzyżewski, T.; Wdowikowski, M.; Figurski, M. Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction. Energies 2021, 14, 2164. [Google Scholar] [CrossRef]
- Lahouar, A.; Slama, J.B.H. Hour-ahead wind power forecast based on random forests. Renew. Energy 2017, 109, 529–541. [Google Scholar] [CrossRef]
- Wehling, P.; Labudde, R.; Brunelle, S.; Nelson, M. Probability of Detection (POD) as a Statistical Model for the Validation of Qualitative Methods. J. AOAC Int. 2011, 94, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.R.; Schultz, D.M.; Gruntfest, E.C.; Hayden, M.H.; Benight, C.C. Corrigendum: False Alarm Rate or False Alarm Ratio? Weather. Forecast 2009, 24, 1452–1454. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Toyota, T.; Ohbayashi, M. Geographical Distribution of the Ratio of Lengths of Warm Fronts to Cold Fronts in the Northern Hemisphere during 1978–1979 Winter. J. Meteorol. Soc. Jpn. 1986, 64, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Floares, A.; Ferisgan, M.; Onita, D.; Ciuparu, A.; Calin, G.; Manolache, F. The Smallest Sample Size for the Desired Diagnosis Accuracy. Int. J. Oncol. Cancer Ther. 2017, 2, 13–19. [Google Scholar]
Nr | Name | Abbreviation |
---|---|---|
1 | divergence | d |
2 | fraction of cloud cover | cc |
3 | geopotential | z |
4 | mass mixing ratio | o3 |
5 | potential vorticity | pv |
6 | relative humidity | r |
7 | specific cloud ice water content | ciwc |
8 | specific cloud liquid water content | clwc |
9 | specific humidity | q |
10 | specific rain water content | crwc |
11 | specific snow water content | cswc |
12 | temperature | t |
13 | u-component of wind | u |
14 | v-component of wind | v |
15 | vertical velocity | w |
16 | vorticity | vo |
Nr | Name | Abbreviation |
---|---|---|
1 | 10 m u-component of wind | 10u |
2 | 10 m v-component of wind | 10v |
3 | 2 m temperature | 2t |
4 | skin temperature | skt |
5 | cloud base height | cbh |
6 | high cloud cover | hcc |
7 | low cloud cover | lcc |
8 | medium cloud cover | mcc |
9 | total cloud cover | tcc |
10 | mean sea level pressure | msl |
11 | total precipitation | tp |
12 | surface pressure | sp |
Date | POD | FAR |
---|---|---|
1 January 2019 | 0.8 | 0.15 |
2 January 2019 | 0.19 | 0.17 |
4 January 2019 | 0.33 | 0.5 |
5 January 2019 | 0.37 | 0.2 |
6 January 2019 | 0.15 | 0.52 |
7 January 2019 | 0.22 | 0.2 |
8 January 2019 | 0.57 | 0.57 |
9 January 2019 | 0.09 | 0.25 |
10 January 2019 | 0.22 | 0.05 |
11 January 2019 | 0.37 | 0.02 |
12 January 2019 | 0.52 | 0.31 |
13 January 2019 | 0.76 | 0.46 |
14 January 2019 | 0.25 | 0.21 |
15 January 2019 | 0.75 | 0.44 |
16 January 2019 | 0.56 | 0.26 |
17 January 2019 | 0.39 | 0.37 |
18 January 2019 | 0.08 | 0.27 |
23 January 2019 | 0.16 | 0.07 |
26 January 2019 | 0.61 | 0.25 |
27 January 2019 | 0.55 | 0.12 |
28 January 2019 | 0.16 | 0.29 |
30 January 2019 | 0.19 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bochenek, B.; Ustrnul, Z.; Wypych, A.; Kubacka, D. Machine Learning-Based Front Detection in Central Europe. Atmosphere 2021, 12, 1312. https://doi.org/10.3390/atmos12101312
Bochenek B, Ustrnul Z, Wypych A, Kubacka D. Machine Learning-Based Front Detection in Central Europe. Atmosphere. 2021; 12(10):1312. https://doi.org/10.3390/atmos12101312
Chicago/Turabian StyleBochenek, Bogdan, Zbigniew Ustrnul, Agnieszka Wypych, and Danuta Kubacka. 2021. "Machine Learning-Based Front Detection in Central Europe" Atmosphere 12, no. 10: 1312. https://doi.org/10.3390/atmos12101312
APA StyleBochenek, B., Ustrnul, Z., Wypych, A., & Kubacka, D. (2021). Machine Learning-Based Front Detection in Central Europe. Atmosphere, 12(10), 1312. https://doi.org/10.3390/atmos12101312