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Abstract: Extreme weather phenomena such as wind gusts, heavy precipitation, hail, thunderstorms,
tornadoes, and many others usually occur when there is a change in air mass and the passing of
a weather front over a certain region. The climatology of weather fronts is difficult, since they are
usually drawn onto maps manually by forecasters; therefore, the data concerning them are limited
and the process itself is very subjective in nature. In this article, we propose an objective method for
determining the position of weather fronts based on the random forest machine learning technique,
digitized fronts from the DWD database, and ERA5 meteorological reanalysis. Several aspects
leading to the improvement of scores are presented, such as adding new fields or dates to the training
database or using the gradients of fields.
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1. Introduction

Extreme weather conditions, due to their influence on human safety and life, and also
on the environment and economy, are now under detailed investigation worldwide. The
Intergovernmental Panel on Climate Change’s (IPCC) Sixth Assessment Report [1] clearly
states that there has been an increase in both the frequency and intensity of extreme events
in recent years, which only confirms that we should try to understand and predict them
better so that we can react appropriately. Some of the most dangerous extreme events are
those related to atmospheric dynamic processes—e.g., hail, thunderstorms, and mesoscale
convective systems [2–4]. These usually occur when two air masses with different physical
properties collide. Rapid changes in temperature and humidity cause short-term, but very
intense, weather phenomena. These layers separating air masses of different origins—
characterized by a narrow layer of high-temperature gradient, density, and wind direction
changes—are called weather fronts, as introduced by Bjerknes and Solberg [5]. This
concept allows us to explain various weather processes and events and has become a brief
way to communicate about them that is still used in synoptic meteorology [6–8]. Frontal
systems have for a long time been acknowledged as the main driving force for extreme
precipitation in midlatitudes [9–11]. Furthermore, anomalies along a frontal feature can
generate instability, such as frontal-wave growth and cyclogenesis; secondary cyclones or
even cyclone families can form, with the potential to cause high-impact weather [11,12].

Recent studies on frontal systems climatology confirm an increase in the number
of fronts, especially strong, active fronts that are more likely to be linked to extreme
weather [13,14]. Therefore, further research on front detection, spatiotemporal variability,
forecast, and future projections is essential. Nevertheless, almost a hundred years after
establishing the term, meteorologists still have not established a clear definition of a
front. The most common (AMS Glossary) definition describes a front as the interface or
transition zone between two air masses of different densities [15]. As temperature is the
main regulator of atmospheric density, it is also regarded as the fundamental determinant.
Nevertheless, many other features may characterize a front. The main problems are the
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horizontal and vertical scale of fronts, but there is also a list of different meteorological
variables that have to be taken into account [12]. The lack of precision in the definition of
a weather front means that there is still no satisfactory method to determine the position
of fronts. Both manual, subjective methods and also more automatic, objective methods
are used. The drawing of synoptic-scale fronts on weather maps is an everyday duty of
forecasters in many national weather services. These maps, in a semi-digital form, are
available online [16–18]. The methodology and procedures for the drawing of maps with
fronts differ between centers and also between forecasters, as the process itself is very
subjective. As a consequence, the same meteorological situation can be visualized in many
different ways.

In terms of manual methods, forecasters’ subjective decisions are the most important
aspect. In some cases, fronts are drawn only when there is an evident difference in
meteorological conditions in some part of the atmosphere, while other researchers tend to
mark fronts or quasi-fronts when there is some instability or small difference in the state of
the atmosphere. There is a significant difference in front numbers, and even front forms,
when one compares archived weather maps with present ones, published on different
websites and bulletins [19–21]. At present, there are many convergence lines and secondary
fronts drawn, which could not have been found 20–30 years before. Therefore, there is a
problem with the lack of homogenous data.

The current situation, as presented above, as well as opportunities with new methods,
techniques, and extended databases have led scientists to seek new ways to determine and
analyze weather fronts. Some recent publications are devoted to this subject with the use
of different input data [22,23].

Objective approaches for determining the positions of weather fronts can be divided
into methods using frontal location functions and those using machine learning techniques.
A thermodynamic definition of a front was proposed by Hewson [24], where any gridded
meteorological dataset can be used to draw fronts automatically, without forecaster inter-
vention. This method has been used, as well as slightly modified, improved, and updated,
in a number of studies [8,10,12,25], with the conclusion being that it helps to increase
forecasters’ productivity. Another method is based on wind shift and acceleration [26] and
has also been used in other studies [27]. Comparing the two methods, Hope et al. [28]
found them equivalent, while, for Schemm et al. [29], the thermodynamic method was
found to be better for midlatitude weather systems, while the wind method was better for
regions with strong convergence or wind shear [11].

The second, more recent approach is related to machine learning techniques. Several
recent publications have addressed this problem with the use of deep learning or deep
convolutional neural networks. Biard and Kunkel [30] proposed the DL-FRONT algorithm,
which uses labeled front datasets from the National Weather Service (NWS) Coded Surface
Bulletin [31] and a two-dimensional convolutional neural network to produce objective
front localizations over North America, detecting nearly 90% of the manually analyzed
fronts. Deep convolutional neural networks were used by Liu et al. [32] for the detection of
extreme climate events, such as weather fronts, tropical cyclones, and atmospheric rivers.

In this work, we propose a novel method for detecting weather fronts over Central
Europe based on the digitized locations of fronts from Deutscher Wetterdienst (DWD)
maps using the ArcGIS software, ERA5 reanalysis, and the random forest machine learn-
ing technique.

2. Materials and Methods
2.1. Study Area

The study area covers Central Europe, which is meteorologically and synoptically well-
recognized by authors. This is the region located in the center of the European continent in
a temperate interim climate zone where different air masses often mix together, especially
those from the west (different types of polar maritime air masses) with those from the east
(polar continental air masses). The occurrence of weather fronts is directly related to these
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airflows, with a mean frequency of about 40% of the days in a year [13,33], and often they
are characterized as very active. Often, changes in weather conditions are related to the
high temporal frequency of these weather fronts. On many occasions, this leads to the
occurrence of extreme weather conditions, such as thunderstorms with tornadoes and bow
echoes in the summer, or high wind speeds with heavy snowfall in the winter [2–4,10].

Therefore, Central Europe is a good region for study and is often considered for testing.
Additionally, the study area is geographically complex, with lowlands, highlands, moun-
tains, and marine areas, and reflects different topographic conditions for the formation and
transformation of weather fronts and their role in weather conditions.

All analyses were performed for the geographical region 5◦–30◦ W and 45◦–60◦ N.

2.2. Digitalization of DWD Front Maps

Weather fronts from the DWD are available in the form of GIF maps. The procedure
for the digitalization of the geographical positions of fronts was invented in the ArcGIS
environment. An example of one day is presented in Figure 1. Although all types of fronts
were separated with this procedure, in this study we chose to use all of them together (the
position of any kind of front is marked by a 1 in our dataset, while a 0 indicates the lack of
a front). The whole database consists of 24 months of digitized fronts (from 1 September
2017 to 31 August 2019, with one map for every day from 12 UTC) from DWD maps.
Forty-two percent of all points were labeled as cold fronts, 34% as warm fronts, and 24% as
occluded fronts.
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Figure 1. Example of the digitalization procedure.

2.3. Meteorological Reanalysis

The digitized weather fronts were used for further analysis based on data from
an ERA5 meteorological reanalysis [34]. We used 4 pressure levels—925, 850, 750, and
500 hPa (Table 1)—and all 16 available meteorological fields that can indicate changes in
weather conditions in the selected area. These levels were chosen after many attempts and
discussions with forecasters from the IMGW-PIB Central Meteorological Office in Krakow
over the last few years. Because of the significant variations in meteorological conditions
near the ground, only 12 fields from the surface level were used in this analysis (Table 2). The
correctness of this selection was confirmed in several situations, where fields and levels that
were not relevant to the occurrence and transformation of weather fronts were excluded.
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Table 1. ERA5 pressure level variables.

Nr Name Abbreviation

1 divergence d
2 fraction of cloud cover cc
3 geopotential z
4 mass mixing ratio o3
5 potential vorticity pv
6 relative humidity r

7 specific cloud ice water
content ciwc

8 specific cloud liquid water
content clwc

9 specific humidity q
10 specific rain water content crwc
11 specific snow water content cswc
12 temperature t
13 u-component of wind u
14 v-component of wind v
15 vertical velocity w
16 vorticity vo

Table 2. ERA5 surface variables.

Nr Name Abbreviation

1 10 m u-component of wind 10u
2 10 m v-component of wind 10v
3 2 m temperature 2t
4 skin temperature skt
5 cloud base height cbh
6 high cloud cover hcc
7 low cloud cover lcc
8 medium cloud cover mcc
9 total cloud cover tcc
10 mean sea level pressure msl
11 total precipitation tp
12 surface pressure sp

2.4. Machine Learning

The random forest method [35,36]—an ensemble machine learning method based
on the construction of many decision trees that is widely used for many applications in
meteorology [37–40], climatology [41,42], medicine [43,44], renewable energy [45–47], and
many other fields—was used to build a model that combined meteorological parameters
from the ERA5 dataset with the positions of fronts from digitized DWD maps. Since
atmospheric conditions differ significantly between weather seasons in Central Europe, our
analyses were performed separately for winter (DJF), spring (MAM), summer (JJA), and
autumn (SON). In the first experiment, we trained the model from 1 to 30 January 2019,
then examined different configurations for 31 January 2019. Finally, more general veri-
fication was performed for all days with fronts in the study area in January, April, July,
and October. In addition, the impact of the length of the training period on the scores
was examined. For example, 1 month of training data for days in January 2019 means all
days from the same month; 3 months of training data for days in January 2019 means all
the days from the same season (December 2018, January 2019, and February 2019); and
6 months of training data for days in January 2019 means all days from the same season
and the same season of the previous year (December 2017, January 2018, February 2018,
December 2018, January 2019, and February 2019).
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2.5. Error Metrics

Standard metrics, such as probability of detection (POD [48]) and false alarm rate
(FAR [49]) scores, were used to determine the impact of changing the length of the training
period, adding surface fields to the data on pressure levels and the spatial sizes of fronts
during the training process, and training with the values of the horizontal gradients of the
meteorological fields.

3. Results

Several experiments were prepared to determine the best method for building a system
to objectively determine the positions of weather fronts. The following subsections will
show the results depending on the size of the fronts in testing and training; the differences
in scores when pressure level fields were used with or without surface fields, using the
horizontal gradients of meteorological fields in comparison to their original values; and
the impact of the length of the training period.

3.1. Variable Importance

Since the random forest method enables us to look at the characteristics of the model
that was built from the training dataset, a variable importance plot is presented in Figure 2.
Out of the ten most important variables (we present only ten variables for the clarity of
the plot), eight were from pressure level fields, and only two were from surface fields. The
most important variable was the specific rain water content at 925 hPa and the second was
total precipitation. There were also two other fields at 925 hPa (specific cloud liquid water
content and specific humidity), and the specific cloud liquid water content was ranked
in the top ten most important variables at three different pressure levels (925, 850, and
700 hPa). Another interesting result is related to the importance of geopotential at 700 and
500 hPa and the date of the model.
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Figure 2. Variable importance plot.

3.2. Size of Fronts in Training and Testing

Weather maps show fronts as lines, where in reality they are bigger areas. Because
there is no univocal definition of a front, different criteria were taken into consideration—
e.g., a minimum extension of 500 km [29] and at least three contiguous grid points [8], or
two or more neighboring grid points masked, in order to be considered a front [23]. That is
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why we studied the optimal size of a front in our system. For every front point from the
digitized database and the ERA5 data (both for surface and pressure level fields), we took
into consideration neighboring grid points to test their optimal number.

Figure 3 shows an example of a situation from 31 January 2019, which is presented
in its original form from the DWD database in Figure 4. The green areas show hit events
by the system, the red areas indicate miss events, while false alarms are presented as blue
dots on the maps. When only one point is taken into consideration (Figure 3a), the system
produces only miss events; in reality, on the DWD map, the front was located slightly to
the north of the system’s prediction. Adding more points to the analysis (Figure 3b–f)
resulted in a better POD score. The most optimal configuration of this analysis is with
four additional points for every front coordinate, with the POD being higher than the
FAR (Figure 5).
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3.3. Surface and Pressure Levels Fields

In the previous subsection, the training of the model was performed with both surface
and pressure levels fields from an ERA5 reanalysis. Figure 6 shows the same configuration
as presented in Figure 3d, but with results excluding surface fields. Removing the surface
fields from the model decreased the POD by 40% and increased the FAR by 35% in this
case. In further experiments, both surface and pressure level fields were considered.
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3.4. Gradients of Meteorological Fields

A front, separating air masses of different features, indicates a discontinuity of partic-
ular weather elements, especially air temperature, air pressure moisture, and wind (AMS).
Therefore, their horizontal gradient is often used in front detection as one of the explana-
tory variables [23,50]. We included it in our approach as one of the model’s adaptation
procedures. The use of the horizontal gradients of the meteorological parameters instead
of their values was tested, as well as the area taken into account for gradient calculation,
which is presented in Figure 7. Figure 7a shows the previous results for the values of the
meteorological fields, while Figure 7b–e present a gradient approach with the number of
points used for calculation ranging from one to four. As is shown in Figure 8, the best
results were obtained from gradients calculated with the use of one surrounding points.
While the POD remained similar through the experiments, the FAR for this configuration
was decreased.
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3.5. Length of Training Period

The last examined improvement in our system was related to the length of the training
period. As shown in many publications—i.e., by Floares et al. [51]—various scores can be
significantly improved when the sample size of the dataset used for training the model
is increased. A significant improvement of the FAR score can be achieved with 6 months
of training (Figure 9c) compared to 1 month (Figure 9a). The biggest improvement is the
reduction in points with false alarms, while the level of hits and misses remains similar.
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of training (a); three months of training (b); and 6 months of training (c).

All previous analyses have led to the conclusion that the best configuration for our
model, which is based on ERA5 reanalysis and the random forest method, can be achieved
by expanding the front size in the training dataset; using surface and pressure level fields
with their gradients; and, possibly, using a longer period of training for the dataset.

3.6. Another Case Study

In the previous subsections, the results were presented for selected days in winter.
Here, we show in Figure 10 a similar study for another day in winter and one day in
summer 2019. For both days, there was a significant number of points with fronts in the
region. In Figure 10a, a situation from 16 January 2019 is presented where there was an
active warm weather front over Central Europe, related to a low-level pressure system with
a center over southern Scandinavia, 24 h precipitation of up to 7 mm in northern Poland,
and a few centimeters of fresh snow in the Tatra Mountains. The positions of the fronts, in
this case, were correctly predicted by the model, especially in the north and central areas
of the region. False alarms were mostly present over the coast of Germany, where there
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was a warm sector between warm and cold fronts. Several missing values were recorded
in the southeast of the region, where there was a weaker cold front drawn on the DWD
weather map. Over the whole region, this situation was predicted rather correctly, with a
POD equal to 55% and a FAR of 27%.
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The next situation in this subsection is from 6 July 2019 (Figure 10b), where there was,
again, a low low-level pressure system with a center over southern Scandinavia, with an
active cold front over the coast of Germany and a weaker warm front over Poland. The
cold front was predicted very accurately, while the warm front predictions showed many
missing values. Over the whole region, this situation was predicted rather correctly, with a
POD equal to 50% and a FAR of 27%.

To better understand the model, the characteristics of the POD and FAR scores for
every day in January 2019 are presented in Table 3. On several days, such as 1 January 2019
or 15 January 2019, the proposed method predicts front positions with a high POD and a
low FAR, but on the other hand, several days show the opposite, such as 4 January 2019
or 6 January 2019. Figure 11 shows the meteorological conditions on IMGW-PIB weather
maps for those days. During the days with a low accuracy from the model (Figure 11,
top row), weather conditions were rather stable, with low-level systems present on the
borders of the study area. For days with a high accuracy (Figure 11, bottom row), the
meteorological situation was more dynamic, with more than one front passing through
the center of the selected region. Similar tests were performed for other seasons, with the
best results obtained for winter and autumn and an approximately 20% degradation of the
POD and FAR in summer and spring—for clarity, these are not presented in this paper.

Table 3. POD and FAR score for days with fronts in January 2019.

Date POD FAR

1 January 2019 0.8 0.15
2 January 2019 0.19 0.17
4 January 2019 0.33 0.5
5 January 2019 0.37 0.2
6 January 2019 0.15 0.52
7 January 2019 0.22 0.2
8 January 2019 0.57 0.57
9 January 2019 0.09 0.25
10 January 2019 0.22 0.05
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Table 3. Cont.

Date POD FAR

11 January 2019 0.37 0.02
12 January 2019 0.52 0.31
13 January 2019 0.76 0.46
14 January 2019 0.25 0.21
15 January 2019 0.75 0.44
16 January 2019 0.56 0.26
17 January 2019 0.39 0.37
18 January 2019 0.08 0.27
23 January 2019 0.16 0.07
26 January 2019 0.61 0.25
27 January 2019 0.55 0.12
28 January 2019 0.16 0.29
30 January 2019 0.19 0.04
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4. Discussion and Conclusions

In this study, we presented a new method for the objective determination of weather
front positions with the use of a digitization procedure from weather maps and the random
forest method. We have shown that, with a sample of digitized maps, we can train a
machine learning model into a useful tool for the climatological analysis of fronts and
for everyday forecasting duties. Using a substantive approach, we have confirmed the
advantage of treating fronts as broader regions rather than as frontal lines, as well as using
the horizontal gradients of meteorological fields rather than their raw values. Similar to
other applications of machine learning techniques, we have shown that with more data
and a longer training period, models will achieve better results.

Our work, which is the result of several previous attempts, used novel meteorological
databases such as ERA5 and modern statistical techniques such as machine learning
methods to address problems with the objective determination of fronts using the example
of Central Europe. Some of the case studies that we presented showed that the proposed
model works better with active fronts, with a POD of around 0.8 and a FAR of 0.15, but that
it has problems with situations where fronts are vanishing and meteorological situations
are rather stable, with a POD and FAR of around 0.2. We believe that, even if they are
already promising, these results can be further improved.

The presented method will be developed using more data for training. The authors
also hope that it will be possible to distinguish the different types of fronts, which is not
yet possible because of the small sample size of digitized fronts. This issue seems to be the
most problematic. In the future, thanks to this method, it will be possible to develop front
climatology for Central Europe. This method will also be useful for other applications,
such as the determination and prediction of air mass positions.
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