Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Extreme Events
2.2. NARX Model Architectures
2.3. Evaluation Metrics
3. Results and Discussion
3.1. Training and Testing
3.2. Time Series Analysis
3.3. Sensitivity Analysis
3.4. Comparison with Other Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Ensemble Model
Model | Net | ta = 12 h | ta = 24 h | ta = 48 h | ta = 72 h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | MAE (cm) | RAE (%) | R2 | MAE (cm) | RAE (%) | R2 | MAE (cm) | RAE (%) | R2 | MAE (cm) | RAE (%) | ||
Model A | 1 | 0.942 | 2.00 | 23.92 | 0.892 | 2.82 | 33.76 | 0.840 | 3.44 | 41.17 | 0.839 | 3.17 | 38.00 |
2 | 0.943 | 2.06 | 24.67 | 0.916 | 2.63 | 31.55 | 0.888 | 2.88 | 34.55 | 0.871 | 3.03 | 36.34 | |
3 | 0.955 | 2.16 | 25.89 | 0.911 | 2.72 | 32.57 | 0.877 | 2.96 | 35.46 | 0.841 | 3.15 | 37.72 | |
4 | 0.940 | 2.09 | 25.09 | 0.916 | 2.52 | 30.26 | 0.896 | 2.64 | 31.63 | 0.843 | 3.42 | 41.02 | |
5 | 0.941 | 2.00 | 23.99 | 0.910 | 2.74 | 32.84 | 0.896 | 2.68 | 32.11 | 0.880 | 2.88 | 34.55 | |
6 | 0.942 | 1.96 | 23.44 | 0.905 | 2.96 | 35.52 | 0.902 | 2.88 | 34.56 | 0.832 | 3.24 | 38.87 | |
7 | 0.954 | 2.11 | 25.30 | 0.903 | 2.98 | 35.68 | 0.877 | 2.96 | 35.53 | 0.782 | 3.85 | 46.13 | |
8 | 0.941 | 1.99 | 23.86 | 0.902 | 2.99 | 35.80 | 0.880 | 2.93 | 35.09 | 0.888 | 2.89 | 34.64 | |
9 | 0.941 | 2.09 | 25.03 | 0.913 | 2.69 | 32.18 | 0.887 | 2.86 | 34.26 | 0.886 | 3.03 | 36.31 | |
10 | 0.942 | 2.06 | 24.74 | 0.906 | 2.95 | 35.37 | 0.898 | 2.92 | 34.95 | 0.884 | 2.36 | 28.27 | |
Ensemble | 0.951 | 1.81 | 21.73 | 0.902 | 2.93 | 35.17 | 0.886 | 2.83 | 33.90 | 0.882 | 3.06 | 36.66 | |
Model B | 1 | 0.938 | 2.02 | 24.20 | 0.889 | 2.87 | 34.45 | 0.839 | 3.44 | 41.23 | 0.768 | 4.05 | 48.57 |
2 | 0.940 | 2.14 | 25.66 | 0.883 | 3.08 | 36.96 | 0.839 | 3.44 | 41.23 | 0.838 | 3.19 | 38.19 | |
3 | 0.938 | 2.01 | 24.13 | 0.889 | 2.85 | 34.17 | 0.849 | 3.38 | 40.50 | 0.762 | 4.19 | 50.16 | |
4 | 0.941 | 2.12 | 25.36 | 0.911 | 2.72 | 32.55 | 0.883 | 2.91 | 34.90 | 0.780 | 4.03 | 48.33 | |
5 | 0.939 | 1.99 | 23.90 | 0.899 | 3.03 | 36.25 | 0.876 | 2.98 | 35.69 | 0.820 | 3.62 | 43.35 | |
6 | 0.942 | 2.08 | 24.96 | 0.912 | 2.71 | 32.44 | 0.892 | 2.74 | 32.84 | 0.783 | 3.98 | 47.67 | |
7 | 0.941 | 2.10 | 25.23 | 0.902 | 2.99 | 35.83 | 0.838 | 3.18 | 38.09 | 0.774 | 4.05 | 48.56 | |
8 | 0.939 | 1.99 | 23.87 | 0.900 | 2.99 | 35.88 | 0.891 | 2.82 | 33.79 | 0.840 | 3.16 | 37.88 | |
9 | 0.940 | 2.14 | 25.67 | 0.902 | 2.97 | 35.61 | 0.897 | 2.63 | 31.48 | 0.841 | 3.11 | 37.64 | |
10 | 0.941 | 2.00 | 23.91 | 0.913 | 2.68 | 32.14 | 0.887 | 2.88 | 34.53 | 0.844 | 3.12 | 37.35 | |
Ensemble | 0.951 | 1.85 | 22.13 | 0.894 | 3.02 | 36.17 | 0.882 | 2.79 | 33.42 | 0.863 | 3.25 | 38.99 |
Appendix B. NARX Model with Only the Lagged Tide Level as Input Variable
Metric | Model C | |||
---|---|---|---|---|
ta = 12 h | ta = 24 h | ta = 48 h | ta = 72 h | |
R2 | 0.397 | 0.377 | 0.358 | 0.310 |
MAE (cm) | 17.77 | 18.16 | 18.00 | 18.72 |
RAE (%) | 79.22 | 81.08 | 80.39 | 83.54 |
References
- Garrett, C. Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature 1972, 238, 441–443. [Google Scholar] [CrossRef]
- Andersen, C.F.; Battjes, J.A.; Daniel, D.E.; Edge, B.; Espey, W., Jr.; Gilbert, R.B.; Jackson, T.L.; Kennedy, D.; Mileti, D.S.; Mitchell, J.K.; et al. The New Orleans Hurricane Protection System: What Went Wrong and Why (Report); American Society of Civil Engineers: Reston, VA, USA, 2007. [Google Scholar]
- Tosoni, A.; Canestrelli, P. Il modello stocastico per la previsione di marea a Venezia. Atti Ist. Veneto Sci. Lett. Arti. 2011, 169, 2010–2011. [Google Scholar]
- Umgiesser, G.; Canu, D.M.; Cucco, A. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J. Mar. Syst. 2004, 51, 123–145. [Google Scholar] [CrossRef]
- Kişi, Ö. Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 2007, 12, 532–539. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Cheng, C.T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Granata, F.; Gargano, R.; De Marinis, G. Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA’s storm water management model. Water 2016, 8, 69. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Jaafar, O.; Deo, R.C.; Kisi, O.; Adamowski, J.; Quilty, J.; El-Shafie, A. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 2016, 542, 603–614. [Google Scholar] [CrossRef]
- Granata, F.; Saroli, M.; de Marinis, G.; Gargano, R. Machine learning models for spring discharge forecasting. Geofluids 2018, 2018, 8328167. [Google Scholar] [CrossRef] [Green Version]
- Mouatadid, S.; Raj, N.; Deo, R.C.; Adamowski, J.F. Input selection and data-driven model performance optimization to predict the Standardized Precipitation and Evaporation Index in a drought-prone region. Atmos. Res. 2018, 212, 130–149. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Granata, F.; Gargano, R.; de Marinis, G. Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. Sci. Total Environ. 2020, 703, 135653. [Google Scholar] [CrossRef]
- Imani, M.; Kao, H.C.; Lan, W.H.; Kuo, C.Y. Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine. Glob. Planet. Chang. 2018, 161, 211–221. [Google Scholar] [CrossRef]
- Liu, J.; Shi, G.; Zhu, K. High-Precision Combined Tidal Forecasting Model. Algorithms 2019, 12, 65. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Deo, M.C. Real-time wave forecasts off the western Indian coast. Appl. Ocean Res. 2007, 29, 72–79. [Google Scholar] [CrossRef]
- Karimi, S.; Kisi, O.; Shiri, J.; Makarynskyy, O. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Comput. Geosci. 2013, 52, 50–59. [Google Scholar] [CrossRef]
- Riazi, A. Accurate tide level estimation: A deep learning approach. Ocean Eng. 2020, 198, 107013. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Chen, J.; Zhao, B. Real-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological model. J. Hydrol. 2019, 579, 124229. [Google Scholar] [CrossRef]
- Lee, W.K.; Resdi, T.A. Simultaneous hydrological prediction at multiple gauging stations using the NARX network for Kemaman catchment, Terengganu, Malaysia. Hydrol. Sci. J. 2016, 61, 2930–2945. [Google Scholar] [CrossRef] [Green Version]
- Guzman, S.M.; Paz, J.O.; Tagert, M.L.M. The Use of NARX Neural Networks to Forecast Daily Groundwater Levels. Water Resour. Manag. 2017, 31, 1591–1603. [Google Scholar] [CrossRef]
- Rjeily, Y.A.; Abbas, O.; Sadek, M.; Shahrour, I.; Chehade, F.H. Flood forecasting within urban drainage systems using NARX neural network. Water Sci. Technol. 2017, 76, 2401–2412. [Google Scholar] [CrossRef] [PubMed]
- Di Nunno, F.; Granata, F. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environ. Res. 2020, 190, 110062. [Google Scholar] [CrossRef]
- Siegelmann, H.T.; Horne, B.G.; Giles, C.L. Computational capabilities of recurrent NARX neural networks. IEEE Trans. Syst. Man. Cybern. B Cybern. 1997, 27, 208–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Nunno, F.; de Marinis, G.; Gargano, R.; Granata, F. Tide prediction in the Venice Lagoon using Nonlinear Autoregressive Exogenous (NARX) neural network. Water 2021. under review. [Google Scholar]
- Franco, P.; Jeftic, L.; Rizzoli, P.M.; Michelato, A.; Orlic, M. Descriptive model of the northern Adriatic. Oceanol. Acta 1982, 5, 379–389. [Google Scholar]
- Zolt, S.D.; Lionello, P.; Nuhu, A.; Tomasin, A. The disastrous storm of 4 November 1966 on Italy. Nat. Hazards Earth Sys. 2006, 6, 861–879. [Google Scholar] [CrossRef] [Green Version]
- Atlas of the Lagoon. Basic Map. 2020. Available online: http://atlante.silvenezia.it/en/index_ns.html (accessed on 14 April 2021).
- Desouky, M.M.A.; Abdelkhalik, O. Wave prediction using wave rider position measurements and NARX network in wave energy conversion. Appl. Ocean Res. 2019, 82, 10–21. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Bayesian Interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to Bayesian learning. In Proceedings of the International Conference on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997; Volume 3, pp. 1930–1935. [Google Scholar] [CrossRef]
- MathWorks. MATLAB Deep Learning Toolbox Release 2020a; MathWorks: Natick, MA, USA, 2020. [Google Scholar]
- Comune di Venezia. Centro Previsioni e Segnalazioni Maree La marea La marea astronomica. 2020. Available online: https://www.comune.venezia.it/it/content/la-marea-astronomica (accessed on 14 April 2021).
- ARPA. Operational Oceanography in Italy toward a Sustainable Management of the Sea; Oddo, P., Coppini, G., Sorgente, R., Cardin, V., Reseghetti, F., Eds.; Arpa Emilia-Romagna: Bologna, Italy, 2012; Available online: https://www.arpae.it/it/documenti/pubblicazioni/quaderni/oceanografia-operativa-in-italia-operational-oceanography-in-italy (accessed on 14 April 2021).
- Umgiesser, G. The impact of operating the mobile barriers in Venice (MOSE) under climate change. J. Nat. Conserv. 2020, 54, 125783. [Google Scholar] [CrossRef]
- ISPRA. Modellistica Accuratezza dei Modelli. 2020. Available online: https://www.venezia.isprambiente.it/modellistica#Accuratezza%20dei%20modelli (accessed on 14 April 2021).
- Mariani, S.; Casaioli, M.; Coraci, E.; Malguzzi, P. A new high-resolution BOLAM-MOLOCH suite for the SIMM forecasting system: Assessment over two HyMeX intense observation periods. Nat. Hazards Earth Syst. Sci. 2015, 15, 1–24. [Google Scholar] [CrossRef] [Green Version]
- CNR-ISMAR. Shallow Water Hydrodynamic Finite Element Model SHYFEM. 2020. Available online: https://sites.google.com/site/shyfem (accessed on 14 April 2021).
- Granata, F.; Di Nunno, F. Artificial Intelligence models for prediction of the tide level in Venice. Stoch. Environ. Res. Risk Assess. 2021, 1–12. [Google Scholar] [CrossRef]
Metric | Model A | Model B | ||||||
---|---|---|---|---|---|---|---|---|
ta = 12 h | ta = 24 h | ta = 48 h | ta = 72 h | ta = 12 h | ta = 24 h | ta = 48 h | ta = 72 h | |
R2 | 0.950 | 0.923 | 0.911 | 0.899 | 0.941 | 0.905 | 0.888 | 0.860 |
MAE (cm) | 1.96 | 2.46 | 2.91 | 2.91 | 2.14 | 2.55 | 3.05 | 3.29 |
RAE (%) | 23.03 | 28.95 | 34.21 | 34.25 | 25.13 | 29.97 | 35.87 | 38.75 |
Time Series Length for the Training | ta (h) | R2 | MAE (cm) | RAE (%) |
---|---|---|---|---|
January 2009–June 2012 (Full length) | 12 | 0.941 | 2.14 | 25.13 |
24 | 0.905 | 2.55 | 29.97 | |
48 | 0.888 | 3.05 | 35.87 | |
72 | 0.860 | 3.29 | 38.75 | |
January 2010–June 2012 | 12 | 0.937 | 2.19 | 25.25 |
24 | 0.905 | 3.14 | 33.66 | |
48 | 0.869 | 3.18 | 36.16 | |
72 | 0.844 | 3.43 | 39.12 | |
January 2011–June 2012 | 12 | 0.924 | 2.61 | 26.14 |
24 | 0.898 | 3.25 | 35.72 | |
48 | 0.863 | 3.23 | 38.03 | |
72 | 0.832 | 3.56 | 40.06 | |
January 2012–June 2012 | 12 | 0.902 | 2.67 | 30.04 |
24 | 0.891 | 3.54 | 37.12 | |
48 | 0.844 | 3.71 | 38.36 | |
72 | 0.820 | 3.96 | 40.57 |
Event | Metric | Model A | Model B | ||||||
---|---|---|---|---|---|---|---|---|---|
ta = 12 h | ta = 24 h | ta = 48 h | ta = 72 h | ta = 12 h | ta = 24 h | ta = 48 h | ta = 72 h | ||
Event 1 (length 48 h) | R2 | 0.995 | 0.993 | 0.990 | 0.989 | 0.995 | 0.989 | 0.989 | 0.975 |
MAE (cm) | 2.01 | 2.66 | 3.35 | 3.56 | 2.04 | 3.53 | 3.44 | 4.68 | |
RAE (%) | 6.59 | 8.71 | 10.99 | 11.68 | 6.69 | 11.58 | 11.28 | 15.33 | |
Event 2 (length 168 h) | R2 | 0.992 | 0.989 | 0.987 | 0.984 | 0.987 | 0.982 | 0.975 | 0.974 |
MAE (cm) | 2.43 | 2.70 | 3.24 | 3.53 | 2.76 | 3.65 | 4.17 | 4.09 | |
RAE (%) | 9.30 | 10.33 | 12.37 | 13.49 | 10.57 | 13.96 | 15.95 | 15.62 | |
Event 3 (length 216 h) | R2 | 0.995 | 0.993 | 0.992 | 0.992 | 0.992 | 0.988 | 0.988 | 0.986 |
MAE (cm) | 2.46 | 2.85 | 2.75 | 2.95 | 2.90 | 3.26 | 3.46 | 3.30 | |
RAE (%) | 7.88 | 9.13 | 8.80 | 9.44 | 9.28 | 10.42 | 11.07 | 10.54 |
htide (cm) | ta (h) | I = εm + 2σ (cm) | STAT-1 | STAT-2 | |||
---|---|---|---|---|---|---|---|
Model A | Model B | SHYFEM 5 | SHYFEM 6 | ||||
80–100 | 24 | −1.2 ± 5.5 | −1.4 ± 6.1 | 2.0 ± 12.9 | 1.0 ± 16.8 | −3.7 ± 16.1 | −4.0 ± 16.6 |
48 | −1.1 ± 6.3 | −1.1 ± 6.4 | 1.6 ± 18.3 | −0.6 ± 18.7 | |||
72 | −0.9 ± 6.1 | −0.9 ± 6.2 | 1.9 ± 18.5 | −0.3 ± 20.9 | |||
101–120 | 24 | −1.6 ± 5.5 | −1.6 ± 5.4 | 0.5 ± 12.5 | −3.6 ± 19.6 | −5.7 ± 20.7 | −5.3 ± 23.3 |
48 | −1.8 ± 5.9 | −1.9 ± 6.1 | −3.1 ± 17.5 | −5.5 ± 24.8 | |||
72 | −1.5 ± 5.8 | −1.6 ± 6.6 | −2.8 ± 20.6 | −6.8 ± 26.4 | |||
>120 | 24 | −1.5 ± 5.1 | −1.1 ± 5.3 | −9.4 ± 26.2 | −0.0 ± 26.1 | −19.4 ± 27.0 | −16.7 ± 26.2 |
48 | −2.2 ± 5.1 | −2.5 ± 6.9 | −8.6 ± 21.2 | 0.2 ± 14.8 | |||
72 | −2.0 ± 5.2 | −2.7 ± 7.0 | −11.1 ± 16.8 | −8.8 ± 47.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Nunno, F.; Granata, F.; Gargano, R.; de Marinis, G. Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere 2021, 12, 512. https://doi.org/10.3390/atmos12040512
Di Nunno F, Granata F, Gargano R, de Marinis G. Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere. 2021; 12(4):512. https://doi.org/10.3390/atmos12040512
Chicago/Turabian StyleDi Nunno, Fabio, Francesco Granata, Rudy Gargano, and Giovanni de Marinis. 2021. "Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models" Atmosphere 12, no. 4: 512. https://doi.org/10.3390/atmos12040512
APA StyleDi Nunno, F., Granata, F., Gargano, R., & de Marinis, G. (2021). Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere, 12(4), 512. https://doi.org/10.3390/atmos12040512