The Effect of Increased Ozone Levels on the Stable Carbon and Nitrogen Isotopic Signature of Wheat Cultivars and Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Open Top Chamber Facility
2.3. Instrumentation OTC Facility
2.4. Ozone Exposure Indices
2.5. Plant Material
2.6. Physiological and Yield Parameters
2.7. Nitrogen Content and Stable Carbon and Nitrogen Composition
2.8. Statistical Analysis
3. Results
3.1. Climatic Variables and Ozone Exposure
3.2. Genotype Age-Type Effects
3.3. Ozone Effects
3.4. Age-Type Genotypes × Ozone Interactions
3.5. Yield and Isotopic Signals Correlations
3.6. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SY (g) | Single sw. (mg) | # Grains Ear−1 | Biomass (g) | ||
---|---|---|---|---|---|
Age Type | |||||
Modern CVs. | 33.61 a ± 0.66 | 31.57 a ± 0.66 | 44.18 c ± 1.07 | 78.42 a ± 1.24 | |
Old CVs. | 37.77 b ± 1.08 | 38.08 b ± 0.90 | 36.66 b ± 1.08 | 85.16 b ± 1.40 | |
Landraces | 49.22 c ± 0.63 | 39.61 b ± 0.33 | 18.61 a ± 0.93 | 84.61 b ± 1.05 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Ozone | |||||
FA | 40.94 ± 1.49 | 37.85 b ± 0.93 | 33.55 ± 2.18 | 85.36 b ± 1.31 | |
NFA | 40.97 ± 1.34 | 37.18 b ± 0.83 | 32.98 ± 2.19 | 84.38 b ± 1.27 | |
NFA+ | 40.96 ± 1.56 | 36.95 b ± 0.90 | 33.25 ± 2.14 | 83.74 b ± 1.61 | |
NFA++ | 37.93 ± 1.38 | 33.69 a ± 1.06 | 32.81 ± 2.15 | 77.44 a ± 1.52 | |
p-value | 0.057 | <0.0001 | 0.975 | <0.0001 | |
Age × Ozone | |||||
Cultivars * | FA | 36.18 ± 1.26 | 36.71 b ± 1.33 | 41.18 ± 1.64 | 84.79 b ± 1.67 |
NFA | 36.80 ± 1.22 | 36.02 b ± 1.13 | 40.76 ± 1.57 | 84.99 b ± 1.66 | |
NFA+ | 36.41 ± 1.58 | 35.47 ab ± 1.22 | 39.76 ± 1.85 | 82.04 ab ± 2.14 | |
NFA++ | 33.38 ± 1.19 | 31.10 a ± 1.25 | 39.96 ± 1.79 | 75.34 a ± 1.89 | |
p-value (CVs) | 0.248 | 0.008 | 0.929 | 0.001 | |
Landraces | FA | 50.45 ± 1.51 | 40.13 ± 0.48 | 18.31 ± 1.56 | 86.50 ± 2.13 |
NFA | 49.32 ± 1.17 | 39.52 ± 0.73 | 17.41 ± 1.57 | 83.15 ± 1.93 | |
NFA+ | 50.06 ± 1.25 | 39.90 ± 0.61 | 20.23 ± 2.56 | 87.13 ± 1.98 | |
NFA++ | 47.04 ± 0.94 | 38.87± 0.79 | 18.51 ± 1.75 | 81.66 ± 2.17 | |
p-value (Land.) | 0.219 | 0.558 | 0.764 | 0.193 | |
p-value (Age × O3) | 0.946 | 0.289 | 0.767 | 0.218 |
References
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. The European environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe; European Environment Agency: Copenhagen, Denmark, 2019. Available online: https://www.eea.europa.eu/publications/soer-2020 (accessed on 4 July 2021). [CrossRef]
- Harmens, H.; Hayes, F.; Mills, G.; Sharps, K.; Osborne, S.; Pleijel, H. Wheat yield responses to stomatal uptake of ozone: Peak vs rising background ozone conditions. Atmos. Environ. 2018, 173, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cooper, O.R.; Parrish, D.D.; Ziemke, J.; Balashov, N.V.; Cupeiro, M.; Galbally, I.E.; Gilge, S.; Horowitz, L.; Jensen, N.R.; Lamarque, J.-F.; et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anthr. 2014, 2, 000029. [Google Scholar] [CrossRef]
- European Environment Agency. Exposure of Europe’s Ecosystems to Ozone-Figure 1; European Environment Agency: Copenhagen, Denmark, 2020. Available online: http://www.eea.europa.eu/data-and-maps/indicators/exposure-of-ecosystems-to-acidification-2/exposure-of-ecosystems-to-acidification-1 (accessed on 4 July 2021).
- Tai, A.P.K.; Martin, M.V.; Heald, C.L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Chang. 2014, 4, 817–821. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Air Quality Statistics; European Environment Agency: Copenhagen, Denmark, 2018.
- European Environment Agency. Annual Report on EU Emissions Inventory under the Convention of Long-Range Transboundary Air Pollution (LRTAP); European Environment Agency: Copenhagen, Denmark, 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/cc5ccc82-dc41-11ea-adf7-01aa75ed71a1/language-en (accessed on 4 July 2021).
- LRTAP Convention. Mapping Critical Levels for Vegetation, Revised Chapter III of the Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. Conv. Long Range Transbound. Air Pollut. 2017, 3, 9. [Google Scholar]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Paeth, H.; Vogt, G.; Paxian, A.; Hertig, E.; Seubert, S.; Jacobeit, J. Quantifying the evidence of climate change in the light of uncertainty exemplified by the Mediterranean hot spot region. Glob. Planet. Change 2017, 151, 144–151. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E.; et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elementa 2018, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, E.; Fischer, G.; van Velthuizen, H.; van Dingenen, R.; Dentener, F.; Mills, G.; Walter, C.; Ewert, F. Limited potential of crop management for mitigating surface ozone impacts on global food supply. Atmos. Environ. 2011, 45, 2569–2576. [Google Scholar] [CrossRef]
- Hoshika, Y.; Katata, G.; Deushi, M.; Watanabe, M.; Koike, T.; Paoletti, E. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Pandey, A.K.; Ghosh, A.; Agrawal, M.; Agrawal, S.B. Ecotoxicology and Environmental Safety E ff ect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality. Ecotoxicol. Environ. Saf. 2018, 158, 59–68. [Google Scholar] [CrossRef]
- Gillespie, K.M.; Xu, F.; Richter, K.T.; Mcgrath, J.M.; Markelz, R.J.C.; Ort, D.R.; Leakey, A.D.B.; Ainsworth, E.A. Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant Cell Environ. 2012, 35, 169–184. [Google Scholar] [CrossRef]
- Emberson, L.D.; Pleijel, H.; Ainsworth, E.A.; van den Berg, M.; Ren, W.; Osborne, S.; Mills, G.; Pandey, D.; Dentener, F.; Büker, P.; et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 2018, 100, 19–34. [Google Scholar] [CrossRef]
- Sanz, J.; Muntifering, R.B.; Bermejo, V.; Gimeno, B.S.; Elvira, S. Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum. Atmos. Environ. 2005, 39, 5899–5907. [Google Scholar] [CrossRef]
- Ainsworth, E.A. Understanding and improving global crop response to ozone pollution. Plant J. 2017, 90, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; González-Fernández, I.; Calvete-Sogo, H.; Lin, J.S.; Alonso, R.; Muntifering, R.; Bermejo, V. Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri. Atmos. Environ. 2014, 94, 765–772. [Google Scholar] [CrossRef]
- Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L.; Pleijel, H. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos. Environ. 2007, 41, 2630–2643. [Google Scholar] [CrossRef]
- Wilkinson, S.; Mills, G.; Illidge, R.; Davies, W.J. How is ozone pollution reducing our food supply? J. Exp. Bot. 2012, 63, 527–536. [Google Scholar] [CrossRef]
- Pleijel, H.; Danielsson, H.; Emberson, L.; Ashmore, M.R.; Mills, G. Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato. Atmos. Environ. 2007, 41, 3022–3040. [Google Scholar] [CrossRef]
- Pleijel, H.; Broberg, M.C.; Uddling, J.; Mills, G. Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci. Total Environ. 2018, 613–614, 687–692. [Google Scholar] [CrossRef]
- Broberg, M.C.; Uddling, J.; Mills, G.; Pleijel, H. Fertilizer efficiency in wheat is reduced by ozone pollution. Sci. Total Environ. 2017, 607–608, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Frei, M.; Sharps, K.; Simpson, D.; Pleijel, H.; Burkey, K.; Emberson, L.; Uddling, J.; Broberg, M.; Feng, Z.; et al. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Glob. Chang. Biol. 2018, 24, 4869–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 4 July 2021)ISBN 978-92-5-109551-5.
- Pleijel, H.; Eriksen, A.B.; Danielsson, H.; Bondesson, N.; Selldén, G. Differential ozone sensitivity in an old and a modern Swedish wheat cultivar—Grain yield and quality, leaf chlorophyll and stomatal conductance. Environ. Exp. Bot. 2006, 56, 63–71. [Google Scholar] [CrossRef]
- Roche, D. Stomatal Conductance Is Essential for Higher Yield Potential of C 3 Crops. CRC Crit. Rev. Plant Sci. 2015, 34, 429–453. [Google Scholar] [CrossRef]
- Ruiz, M.; Zambrana, E.; Fite, R.; Sole, A.; Tenorio, J.L.; Benavente, E. Yield and quality performance of traditional and improved bread and durum wheat varieties under two conservation tillage systems. Sustainability. 2019, 11, 4522. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.A.; Rees, D.; Sayre, K.D.; Lu, Z.-M.; Condon, A.G.; Saavedra, A.L. Wheat Yield Progress Associated with Higher Stomatal Conductance and Photosynthetic Rate, and Cooler Canopies. Crop. Sci. 1998, 38, 1467–1475. [Google Scholar] [CrossRef]
- Barnes, J.D.; Velissariou, D.; Davison, A.W.; Holevas, C.D. Comparative ozone sensitivity of old and modern Greek cultivars of spring wheat. New Phytol. 1990, 116, 707–714. [Google Scholar] [CrossRef]
- Agrawal, M.; Singh, B.; Rajput, M.; Marshall, F.; Bell, J.N.B. Effect of air pollution on peri-urban agriculture: A case study. Environ. Pollut. 2003, 126, 323–329. [Google Scholar] [CrossRef]
- González-Fernández, I.; Bermejo, V.; Elvira, S.; de la Torre, D.; González, A.; Navarrete, L.; Sanz, J.; Calvete, H.; García-Gómez, H.; López, A.; et al. Modelling ozone stomatal flux of wheat under mediterranean conditions. Atmos. Environ. 2013, 67, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Calvete-Sogo, H.; Elvira, S.; Sanz, J.; González-Fernández, I.; García-Gómez, H.; Sánchez-Martín, L.; Alonso, R.; Bermejo-Bermejo, V. Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response. Atmos. Environ. 2014, 95, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Monga, R.; Marzuoli, R.; Alonso, R.; Bermejo, V.; González-Fernández, I.; Faoro, F.; Gerosa, G. Varietal screening of ozone sensitivity in Mediterranean durum wheat (Triticum durum, Desf.). Atmos. Environ. 2015, 110, 18–26. [Google Scholar] [CrossRef]
- Pleijel, H.; Danielsson, H.; Gelang, J.; Sild, E.; Selldén, G. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agric. Ecosyst. Environ. 1998, 70, 61–68. [Google Scholar] [CrossRef]
- Yousfi, S.; Serret, M.D.; Márquez, A.J.; Voltas, J.; Araus, J.L. Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol. 2012, 194, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Richards, R.A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Saurer, M.; Fuhrer, J.; Siegenthaler, U. Influence of ozone on the stable carbon isotope composition, δ13C, of leaves and grain of spring wheat (triticum aestivum L.). Plant Physiol. 1991, 97, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Villegas, D.; Aparicio, N.; García del Moral, L.F.; El Hani, S.; Rharrabti, Y.; Ferrio, J.P.; Royo, C. Environmental Factors Determining Carbon Isotope Discrimination and Yield in Durum Wheat under Mediterranean Conditions. Crop. Sci. 2003, 43, 170. [Google Scholar] [CrossRef]
- Araus, J.L.; Cabrera-Bosquet, L.; Serret, M.D.; Bort, J.; Nieto-Taladriz, M.T. Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Funct. Plant Biol. 2013, 40, 595. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Tcherkez, G.; Mahé, A.; Hodges, M. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 2011, 16, 499–506. [Google Scholar] [CrossRef]
- Serret, M.D.; Yousfi, S.; Vicente, R.; Piñero, M.C.; Otálora-Alcón, G.; Del Amor, F.M.; Araus, J.L. Interactive effects of CO2 concentration and water regime on stable isotope signatures, nitrogen assimilation and growth in sweet pepper. Front. Plant Sci. 2018, 8, 2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäggi, M.; Saurer, M.; Volk, M.; Fuhrer, J. Effects of elevated ozone on leaf δ 13C and leaf conductance of plant species grown in semi-natural grassland with or without irrigation. Environ. Pollut. 2005, 134, 209–216. [Google Scholar] [CrossRef]
- Cui, J.; Lamade, E.; Fourel, F.; Tcherkez, G. δ15N values in plants are determined by both nitrate assimilation and circulation. New Phytol. 2020, 226, 1696–1707. [Google Scholar] [CrossRef]
- Tcherkez, G. Natural 15N/14N isotope composition in C3 leaves: Are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites? Funct. Plant Biol. 2011, 38, 1. [Google Scholar] [CrossRef]
- Sanchez-Bragado, R.; Serret, M.D.; Araus, J.L. The nitrogen contribution of different plant parts to wheat grains: Exploring genotype, water, and nitrogen effects. Front. Plant Sci. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, P.; Martinez-Carrasco, R.; Martín del Molino, M.M.; Rojo, B.; Ulloa, M. Nitrogen Uptake and Accumulation in Grains of Three Winter Wheat Varieties with Altered Source—Sink Ratios. J. Exp. Bot. 1989, 40, 707–710. [Google Scholar] [CrossRef]
- Yousfi, S.; Serret, M.D.; Voltas, J.; Araus, J.L. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Δ13C, and δ15N of durum wheat and related amphiploids. J. Exp. Bot. 2010, 61, 3529–3542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Heagle, A.S.; Philbeck, R.B.; Ferrell, R.E.; Heck, W.W. Design and Performance of a Large, Field Exposure Chamber to Measure Effects of Air Quality on Plants. J. Environ. Qual. 1989, 18, 361–368. [Google Scholar] [CrossRef]
- Calvete-Sogo, H.; González-Fernández, I.; Sanz, J.; Elvira, S.; Alonso, R.; García-Gómez, H.; Ibáñez-Ruiz, M.A.; Bermejo-Bermejo, V. Heterogeneous responses to ozone and nitrogen alter the species composition of Mediterranean annual pastures. Oecologia 2016, 181, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, J.; Skärby, L.; Ashmore, M.R. Critical levels for ozone effects on vegetation in Europe. Environ. Pollut. 1997, 97, 91–106. [Google Scholar] [CrossRef]
- Eurostat. Cereals for the Production of Grain (Including Seed) by Area, Production and Humidity. 2021. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00027/default/table?lang=en (accessed on 2 February 2021).
- Ministerio para la Trasmisión Ecológica. Evaluación de la Calidad del Aire en España Año 2019. MITECO 2019. Available online: https://www.miteco.gob.es/images/es/informeevaluacioncalidadaireespana2019_tcm30-510616.pdf (accessed on 4 July 2021).
- European Environment Agency. Spain Air Pollution Fact Sheet 2014. Eur. Environ. Agency 2014. Available online: https://www.comunidad.madrid/sites/default/files/doc/sanidad/spain_air_pollution_fact_sheet_2014.pdf (accessed on 4 July 2021).
- Horowitz, L.W. Past, present and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. J. Geophys. Res. Atmos. 2006, 111, D22211. [Google Scholar] [CrossRef]
- Fagnano, M.; Maggio, A.; Fumagalli, I. Crops’ responses to ozone in Mediterranean environments. Environ. Pollut. 2009, 157, 1438–1444. [Google Scholar] [CrossRef]
- González-Fernández, I.; Calvo, E.; Gerosa, G.; Bermejo, V.; Marzuoli, R.; Calatayud, V.; Alonso, R. Setting ozone critical levels for protecting horticultural Mediterranean crops: Case study of tomato. Environ. Pollut. 2014, 185, 178–187. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, I.; Elvira, S.; Calatayud, V.; Calvo, E.; Aparicio, P.; Sánchez, M.; Alonso, R.; Bermejo Bermejo, V. Ozone effects on the physiology and marketable biomass of leafy vegetables under Mediterranean conditions: Spinach (Spinacia oleracea L.) and Swiss chard (Beta vulgaris L. var. cycla). Agric. Ecosyst. Environ. 2016, 235, 215–228. [Google Scholar] [CrossRef]
- Gimeno, B.S.; Bermejo, V.; Reinert, R.A.; Zheng, Y.M.; Barnes, J.D. Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain. New Phytol. 1999, 144, 245–260. [Google Scholar] [CrossRef]
- Reichenauer, T.G. Ozone sensitivity in Triticum durum and T. aestivum with respect to leaf injury, photosynthetic activity and free radical content. Physiol. Plant. 1998, 104, 681–686. [Google Scholar] [CrossRef]
- Royo, C.; Martos, V.; Ramdani, A.; Villegas, D.; Rharrabti, Y.; García del Moral, L.F. Changes in Yield and Carbon Isotope Discrimination of Italian and Spanish Durum Wheat during the 20th Century. Agron. J. 2008, 100, 352–360. [Google Scholar] [CrossRef]
- Medina, S.; Vicente, R.; Nieto-Taladriz, M.T.; Aparicio, N.; Chairi, F.; Vergara-Diaz, O.; Araus, J.L. The Plant-Transpiration Response to Vapor Pressure Deficit (VPD) in Durum Wheat Is Associated with Differential Yield Performance and Specific Expression of Genes Involved in Primary Metabolism and Water Transport. Front. Plant Sci. 2019, 9, 1994. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Kobayashi, K.; Ainsworth, E.A. Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis. Glob. Chang. Biol. 2008, 14, 2696–2708. [Google Scholar] [CrossRef]
- Pleijel, H.; Broberg, M.C.; Uddling, J. Ozone impact on wheat in Europe, Asia and North America—A comparison. Sci. Total Environ. 2019, 664, 908–914. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, L.; Pleijel, H.; Zhu, J.; Kobayashi, K. Differential effects of ozone on photosynthesis of winter wheat among cultivars depend on antioxidative enzymes rather than stomatal conductance. Sci. Total Environ. 2016, 572, 404–411. [Google Scholar] [CrossRef]
- Fuhrer, J.; Lehnherr, B.; Moeri, P.B.; Tschannen, W.; Shariat-Madari, H. Effects of ozone on the grain composition of spring wheat grown in open-top field chambers. Environ. Pollut. 1990, 65, 181–192. [Google Scholar] [CrossRef]
- Flagella, Z.; Giuliani, M.M.; Giuzio, L.; Volpi, C.; Masci, S. Influence of water deficit on durum wheat storage protein composition and technological quality. Eur. J. Agron. 2010, 33, 197–207. [Google Scholar] [CrossRef]
- Wang, Y.; Frei, M. Stressed food—The impact of abiotic environmental stresses on crop quality. Agric. Ecosyst. Environ. 2011, 141, 271–286. [Google Scholar] [CrossRef]
- Broberg, M.C.; Feng, Z.; Xin, Y.; Pleijel, H. Ozone effects on wheat grain quality—A summary. Environ. Pollut. 2015, 197, 203–213. [Google Scholar] [CrossRef]
- Simpson, R.J.; Lambers, H.; Dalling, M.J. Nitrogen Redistribution during Grain Growth in Wheat (Triticum aestivum L.). Plant Physiol. 1983, 71, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, R.D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 2001, 6, 121–126. [Google Scholar] [CrossRef]
- Van Frank, G.; Rivière, P.; Pin, S.; Baltassat, R.; Berthellot, J.-F.; Caizergues, F.; Dalmasso, C.; Gascuel, J.-S.; Hyacinthe, A.; Mercier, F.; et al. Genetic Diversity and Stability of Performance of Wheat Population Varieties Developed by Participatory Breeding. Sustainability 2020, 12, 384. [Google Scholar] [CrossRef] [Green Version]
Genotype Age | Genotype | Harvest Date | Growth Habit | Year of Release | References |
---|---|---|---|---|---|
Modern | Nogal | June 9 | Winter | 2006 | Grupo para la Evaluación de Nuevas Variedades de Cultivos Extensivos en España (GENVCE) database a |
Modern | Arthur Nick | June 3 | Spring | 2002 | |
Modern | Berdún | June 10 | Winter | 1998 | |
Modern | Califa Sur | June 3 | Spring | 1999 | |
Old | Marius * | June 10 | Winter | 1976 | Genetic Resources Information and Analytical System (GRIS) database b |
Old | Yécora | June 9 | Spring | 1972 | |
Old | Ablaca | June 18 | Spring | 1982 | |
Old | Pane 247 | June 17 | Spring | 1955 | |
Landrace | Aragón | June 18 | Winter | <1940 | Spanish National Plant Genetic Resources Centre (CRF) database c |
Landrace | Chamorro | June 23 | Winter | <1940 | |
Landrace | Mocho Rojo | June 17 | Spring | <1940 | |
Landrace | Candeal de Vellisca | June 23 | Spring | <1950 |
Experimental Stage | Methodology | Instrumentation |
---|---|---|
Stage 1. Planting | January 26–28th: Seedlings transplanted into pots in the open top chambers (OTC)—four plants per pot—with four pots per CV and OTC, totalling 12 pots per CVs and O3 treatment. April 14th and 30th: Pots fertilized with 120 kg N ha−1 in two doses Manually irrigated to maintain water saturation at field capacity (approx. every 2 days) until grain hardening in May. | 12 cultivars—See Table 3 (3 Modern, 3 Old, 3 Landraces) 17,671.5 cm3 pots Mix of turf (60%), perlite (20%) and vermiculite (20%) |
Stage 2. Ozone Fumigation | Randomized design with 3 chamberless plots and four O3 treatments in 3 blocks:
| Fifteen 3 m × 3 m NCLAN-type OTC with a frustrum. |
O3 application to the NFA+ and NFA++ OTCs for 8 h day−1 (6:00 to 14:00 GTM), 7 days a week. April 14th: fumigation begins 77 days after transplantation, lasting 51–71 days (depending on the CV) until plants reached full grain maturity. | A2Z Ozone Systems Inc., Louisvilla, KY, USA O3 generator system, located in a control cabin and fed with pure O2, with system monitors calibrated at the beginning of the experiment. | |
Monitoring of ozone and nitrogen oxide concentrations inside every OTC and AA plot (above canopy) every 10 min. | Ozone monitoring (ML® 9810B, Teledyne Monitor Labs, Englewood, CO, USA) Nitrogen oxides monitoring (NO2 and NO; ML®9841, Teledyne Monitor Labs, Englewood, CO, USA). | |
Monitoring of the air relative humidity (RH), temperature and photosynthetic active radiation (PAR) in 6 of the OTCs and all 3 AA plots. | RH and temperature monitoring: HOBO® Pro v2, Onset, Bourne, MA, USA. PAR monitoring: OSO-SUN HOBO®, Onset, Bourne, MA, USA. | |
Stage 3. Measurements | May 4–14th: Stomatal conductance (gs) measurements taken between 9:00–13:00 h GMT after 20–30 days (depending on the cultivar) of O3 exposure. Two plants randomly selected per OTC for 2 blocks, measured on the flag leaf. | Li-Cor 6400; Li-Cor, Lincoln, NE, USA, with the standardized conditions: PAR 1000 μmol m2 s−1 RH 55% Temperature range 20–22 °C |
June 3rd: Yield, agronomical yield components, taken after grain maturity and harvest
| Harvested plants divided into straw and spikes, which were later shelled, dried at 60 °C for 48 h and weighed. | |
Nitrogen content parameters and isotopic signalling (15 samples per genotype and 3 samples per O3 treatment and genotype) | EA-IRMS analysis: Elemental analyser (EA): Flash 1112 EA, ThermoFinnigan, Bremen, Germany. Ratio mass spectrometer: Delta C IRMS, Thermo Finnigan, Bremen, Germany. | |
Stage 4. Statistical Analysis | Analysis of variance (ANOVA) with Tukey Honestly Significant Difference test (HSD) Pearson correlations between δ13C and δ15N and gs with yield parameters | IBM® SPSS® Statistics 20 (Chicago, IL, USA) |
Principal Component Analysis without rotation and with Keiser Normalization | R, version 3.6.3, factoMineR package * |
GY | HI | GNY | gs | δ13Cgrain | N% | δ15Ngrain | ||
---|---|---|---|---|---|---|---|---|
Age-Type | ||||||||
Modern CVs. | 30.51 b ± 0.71 | 0.47 b ± 0.00 | 0.81 b ± 0.02 | 0.43 b ± 0.03 | −26.55 a ± 0.07 | 2.67 a ± 0.07 | 4.30 a ± 0.03 | |
Old CVs. | 30.98 b ± 0.53 | 0.45 b ± 0.01 | 0.84 b ± 0.02 | 0.34 ab ± 0.03 | −25.79 b ± 0.09 | 2.70 ab ±0.04 | 4.59 a ± 0.09 | |
Landraces | 20.21 a ± 0.75 | 0.29 a ± 0.01 | 0.56 a ± 0.02 | 0.28 a ± 0.02 | −24.42 c ± 0.06 | 2.84 b ± 0.04 | 5.26 b ± 0.17 | |
p-value | <0.0001 | <0.0001 | <0.0001 | 0.002 | <0.0001 | 0.039 | <0.0001 | |
Ozone | ||||||||
FA | 28.80 b ± 1.15 | 0.41 ± 0.02 | 0.77 ± 0.03 | 0.38 ± 0.04 | −25.88 a ± 0.19 | 2.70 ± 0.05 | 4.66 ab ± 0.14 | |
NFA | 27.75 b ± 1.24 | 0.40 ± 0.02 | 0.75 ± 0.03 | 0.37 ± 0.03 | −25.67 ab ± 0.18 | 2.75 ± 0.04 | 4.86 b ± 0.16 | |
NFA+ | 27.44 ab ± 1.15 | 0.40 ± 0.02 | 0.73 ± 0.03 | 0.38 ± 0.04 | −25.53 bc ± 0.17 | 2.70 ± 0.09 | 4.93 b ± 0.18 | |
NFA++ | 24.94 a ± 0.90 | 0.40 ± 0.01 | 0.69 ± 0.03 | 0.28 ± 0.02 | −25.27 c ± 0.14 | 2.79 ± 0.05 | 4.39 a ± 0.07 | |
p-value | 0.003 | 0.646 | 0.062 | 0.120 | <0.0001 | 0.645 | 0.006 | |
Age× Ozone | ||||||||
Cultivars * | FA | 32.93 b ± 0.60 | 0.48 ± 0.01 | 0.86 b ± 0.02 | 0.44 b ± 0.04 | −26.56 a ± 0.13 | 2.63 ± 0.05 | 4.35 ab ± 0.07 |
NFA | 32.18 b ± 0.66 | 0.47 ± 0.01 | 0.86 b ± 0.02 | 0.41 ab ± 0.03 | −26.28 ab ± 0.14 | 2.69 ± 0.05 | 4.48 b ± 0.05 | |
NFA+ | 30.55 b ± 0.97 | 0.46 ± 0.01 | 0.79 ab ±0.04 | 0.41 ab ± 0.06 | −26.07 bc ± 0.15 | 2.70 ± 0.05 | 4.45 b ± 0.06 | |
NFA++ | 27.31 a ± 0.80 | 0.45 ± 0.01 | 0.77 a ± 0.02 | 0.28 a ± 0.03 | −25.77 c ± 0.11 | 2.82 ± 0.06 | 4.22 a ± 0.05 | |
p-value (CVs) | <0.0001 | 0.111 | 0.005 | 0.046 | <0.0001 | 0.091 | 0.008 | |
Landraces | FA | 20.52 ± 1.32 | 0.29 ± 0.02 | 0.57 ± 0.03 | 0.241 ± 0.042 | −24.50 ± 0.10 | 2.85 ± 0.09 | 5.05 ± 0.31 |
NFA | 18.89 ± 1.43 | 0.27 ± 0.02 | 0.53 ± 0.03 | 0.284 ± 0.063 | −24.44 ± 0.12 | 2.88 ± 0.08 | 5.50 ± 0.38 | |
NFA+ | 21.22 ± 1.87 | 0.30 ± 0.02 | 0.61 ± 0.04 | 0.301 ± 0.058 | −24.45 ± 0.12 | 2.92 ± 0.08 | 5.87 ± 0.44 | |
NFA++ | 20.19 ± 1.43 | 0.30 ± 0.02 | 0.54 ± 0.03 | 0.294 ± 0.018 | −24.29 ± 0.11 | 2.73 ± 0.10 | 4.74 ± 0.12 | |
p-value (Land.) | 0.748 | 0.786 | 0.375 | 0.821 | 0.542 | 0.443 | 0.089 | |
p-value (Age × O3) | 0.018 | 0.261 | 0.133 | 0.180 | 0.179 | 0.065 | 0.045 |
Modern & Old CVs | Landraces | |||||
---|---|---|---|---|---|---|
δ13C | R2 | p-Value | Function | R2 | p-Value | Function |
GY | 0.5979 | *** | y = −6.7319x − 146.98 | 0.2705 | * | y = −8.2655x − 181.64 |
Total Biomass | 0.2899 | ** | y = −9.6042x − 173.28 | ns | ||
HI | 0.1769 | * | y = −0.0296x − 0.3083 | 0.4434 | ** | y = −0.1196x − 2.6314 |
SY | ns | 0.2876 | * | y = 6.8189x + 215.73 | ||
Single sw | ns | 0.2431 | * | y = 2.5208x − 21.953 | ||
GNY | 0.3532 | *** | y = −0.1221x − 2.3929 | ns | ||
N% | ns | 0.5162 | ** | y = 0.6917x + 19.733 | ||
gs | 0.1576 | * | y = −0.1163x − 2.6639 | 0.4360 | ** | y = −0.2078x − 4.7941 |
δ15N | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang-Espino, M.; González-Fernández, I.; Alonso, R.; Araus, J.L.; Bermejo-Bermejo, V. The Effect of Increased Ozone Levels on the Stable Carbon and Nitrogen Isotopic Signature of Wheat Cultivars and Landraces. Atmosphere 2021, 12, 883. https://doi.org/10.3390/atmos12070883
Chang-Espino M, González-Fernández I, Alonso R, Araus JL, Bermejo-Bermejo V. The Effect of Increased Ozone Levels on the Stable Carbon and Nitrogen Isotopic Signature of Wheat Cultivars and Landraces. Atmosphere. 2021; 12(7):883. https://doi.org/10.3390/atmos12070883
Chicago/Turabian StyleChang-Espino, Melissa, Ignacio González-Fernández, Rocío Alonso, Jose Luis Araus, and Victoria Bermejo-Bermejo. 2021. "The Effect of Increased Ozone Levels on the Stable Carbon and Nitrogen Isotopic Signature of Wheat Cultivars and Landraces" Atmosphere 12, no. 7: 883. https://doi.org/10.3390/atmos12070883
APA StyleChang-Espino, M., González-Fernández, I., Alonso, R., Araus, J. L., & Bermejo-Bermejo, V. (2021). The Effect of Increased Ozone Levels on the Stable Carbon and Nitrogen Isotopic Signature of Wheat Cultivars and Landraces. Atmosphere, 12(7), 883. https://doi.org/10.3390/atmos12070883