Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models
Abstract
:1. Introduction
2. Data and Methods
2.1. CMIP6 Archive and Observation
2.2. Definition of the Annual Cycle
3. Simulation of the Annual Cycle Component of East Asian Rainfall
4. Modes of the Annual Cycle of East Asian Rainfall
5. Concluding Remarks
5.1. Summary
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.; Barros, V.; Dokken, D.; Mach, K.; Mastrandrea, M.; Mastrandrea, P.; White, L. Intergovernmental panel on climate change. Climate change 2014: Impacts, adaptation, and vulnerability. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Trenberth, K.E.; Stepaniak, D.P.; Caron, J.M. The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 2000, 13, 3969–3993. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Q. Global monsoon: Dominant mode of annual variation in the tropics. Dynam Atmos Ocean. 2008, 44, 165–183. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Kim, H.J.; Webster, P.J.; Yim, S.Y. Recent change of the global monsoon precipitation (1979–2008). Clim. Dyn. 2012, 39, 1123–1135. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z.T.; Kiefer, T.; Liu, Z.Y. The global monsoon across time scales: Mechanisms and outstanding issues. Earth Sci. Rev. 2017, 174, 84–121. [Google Scholar] [CrossRef]
- Wang, B.; Lin, H. Rainy season of the Asian-Pacific summer monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Endo, H.; Kitoh, A. Projecting changes of the Asian summer monsoon through the twenty-first century. In The Monsoons and Climate Change; Springer: Berlin/Heidelberg, Germany, 2016; pp. 47–66. [Google Scholar]
- Hsu, H.H.; Zhou, T.J.; Matsumoto, J. East Asian, Indochina and Western North Pacific summer monsoon—An update. Asia Pac. J. Atmos. Sci. 2014, 50, 45–68. [Google Scholar] [CrossRef]
- Chen, J.Q.; Bordoni, S. Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Clim. 2014, 27, 3052–3072. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.D.; Yin, Z.Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr. Palaeocl. 2002, 183, 223–245. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.X.; Liu, Y.M.; He, B.; Bao, Q.; Duan, A.M.; Jin, F.F. Thermal controls on the Asian summer monsoon. Sci. Rep. UK 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Yanai, M.; Li, C.; Song, Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteorol. Soc. Jpn. Ser. II 1992, 70, 319–351. [Google Scholar] [CrossRef] [Green Version]
- Ye, D. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. B Am. Meteorol. Soc. 1981, 62, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.S.; Chen, Y.L. The rainfall characteristics of Taiwan. Mon. Weather Rev. 2003, 131, 1323–1341. [Google Scholar] [CrossRef]
- Chen, C.A.; Hsu, H.H.; Hong, C.C.; Chiu, P.G.; Tu, C.Y.; Lin, S.J.; Kitoh, A. Seasonal precipitation change in the Western North Pacific and East Asia under global warming in two high-resolution AGCMs. Clim. Dyn. 2019, 53, 5583–5605. [Google Scholar] [CrossRef]
- Chou, C.; Huang, L.F.; Tseng, L.S.; Tu, J.Y.; Tan, P.H. Annual cycle of rainfall in the Western North Pacific and East Asian sector. J. Clim. 2009, 22, 2073–2094. [Google Scholar] [CrossRef]
- Lin, H.; Wang, B. The time-space structure of the Asian-Pacific summer monsoon: A fast annual cycle view. J. Clim. 2002, 15, 2001–2019. [Google Scholar] [CrossRef]
- Hsu, H.H.; Terng, C.T.; Chen, C.T. Evolution of large-scale circulation and heating during the first transition of Asian summer monsoon. J. Clim. 1999, 12, 793–810. [Google Scholar] [CrossRef]
- Hung, C.W.; Hsu, H.H. The first transition of the Asian summer monsoon, intraseasonal oscillation, and Taiwan mei-yu. J. Clim. 2008, 21, 1552–1568. [Google Scholar] [CrossRef]
- Ueda, H.; Yasunari, T.; Kawamura, R. Abrupt seasonal change of large-scale convective activity over the western Pacific in the northern summer. J. Meteorol. Soc. Jpn. Ser. II 1995, 73, 795–809. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Wang, B. Multi-stage onset of the summer monsoon over the western North Pacific. Clim. Dyn. 2001, 17, 277–289. [Google Scholar] [CrossRef]
- Lee, B.S. A synoptic study of the early summer and autumn rainy season in Korea and in East Asia. Geogr. Rep. Tokyo Metrop. Univ. 1974, 9, 79–95. [Google Scholar]
- Tian, S.F.; Yasunari, T. Climatological aspects and mechanism of spring persistent rains over central China. J. Meteorol. Soc. Jpn. Ser. II 1998, 76, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Wan, R.J.; Wang, T.M.; Wu, G.X. Temporal variations of the spring persistent rains and South China Sea sub-high and their correlations to the circulation and precipitation of the East Asian summer monsoon. Acta Meteorol. Sin. 2008, 22, 530–537. [Google Scholar]
- Wang, B.; Jhun, J.G.; Moon, B.K. Variability and singularity of Seoul, South Korea, rainy season (1778–2004). J. Clim. 2007, 20, 2572–2580. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Lau, K.; Yang, G.; Shen, S. Seasonal and intraseasonal climatology of summer monsoon rainfall over Eeat Asia. Mon. Weather Rev. 1988, 116, 18–37. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.Y.; Chen, L.X. A review of recent research on the East Asian summer monsoon in China. In Monsoon Meteorology; Oxford University Press: London, UK, 1987; Volume 1987, pp. 60–92. [Google Scholar]
- Kusunoki, S.; Arakawa, O. Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Clim. 2015, 28, 5601–5621. [Google Scholar] [CrossRef]
- Liang, X.Z.; Wang, W.C.; Samel, A. Biases in AMIP model simulations of the east China monsoon system. Clim. Dyn. 2001, 17, 291–304. [Google Scholar] [CrossRef]
- Ma, L.B.; Zhu, Z.W.; Li, J.; Cao, J. Improving the simulation of the climatology of the East Asian summer monsoon by coupling the Stochastic Multicloud Model to the ECHAM6.3 atmosphere model. Clim. Dyn. 2019, 53, 2061–2081. [Google Scholar] [CrossRef]
- Song, F.F.; Zhou, T.J. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? J. Clim. 2014, 27, 8761–8777. [Google Scholar] [CrossRef]
- Webster, P.J.; Magana, V.O.; Palmer, T.; Shukla, J.; Tomas, R.; Yanai, M.; Yasunari, T. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Ocean. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Boo, K.O.; Martin, G.; Sellar, A.; Senior, C.; Byun, Y.H. Evaluating the East Asian monsoon simulation in climate models. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.Q.; Zhu, J.; Zhang, Y.C.; Huang, A.N. Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 9035–9047. [Google Scholar] [CrossRef]
- Kang, I.S.; Jin, K.; Wang, B.; Lau, K.M.; Shukla, J.; Krishnamurthy, V.; Schubert, S.D.; Wailser, D.E.; Stern, W.F.; Kitoh, A.; et al. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim. Dyn. 2002, 19, 383–395. [Google Scholar]
- Kripalani, R.H.; Oh, J.H.; Chaudhari, H.S. Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4. Appl. Clim. 2007, 87, 1–28. [Google Scholar] [CrossRef]
- Sperber, K.; Annamalai, H.; Kang, I.S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Lee, J.W.; Hong, S.Y.; Chang, E.C.; Suh, M.S.; Kang, H.S. Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dyn. 2013, 42, 733–747. [Google Scholar] [CrossRef]
- Lambert, S.J.; Boer, G.J. CMIP1 evaluation and intercomparison of coupled climate models. Clim. Dyn. 2001, 17, 83–106. [Google Scholar] [CrossRef]
- Yao, J.C.; Zhou, T.J.; Guo, Z.; Chen, X.L.; Zou, L.W.; Sun, Y. Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Clim. 2017, 30, 8825–8840. [Google Scholar] [CrossRef]
- Gong, H.N.; Wang, L.; Chen, W.; Wu, R.G.; Wei, K.; Cui, X.F. The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J. Clim. 2014, 27, 1659–1678. [Google Scholar] [CrossRef]
- Jiang, D.B.; Wang, H.J.; Lang, X.M. Evaluation of East Asian climatology as simulated by seven coupled models. Adv. Atmos. Sci. 2005, 22, 479–495. [Google Scholar]
- Min, S.K.; Park, E.H.; Kwon, W.T. Future projections of East Asian climate change from multi-AOGCM ensembles of IPCCSRES scenario simulations. J. Meteorol. Soc. Jpn 2004, 82, 1187–1211. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, L.; Zhou, T.J.; Xin, X.G. Evaluation of spring persistent rainfall over East Asia in CMIP3/CMIP5 AGCM simulations. Adv. Atmos. Sci. 2013, 30, 1587–1600. [Google Scholar] [CrossRef]
- Zhao, P.; Jiang, P.P.; Zhou, X.J.; Zhu, C.W. Modeling impacts of East Asian Ocean-Land thermal contrast on spring southwesterly winds and rainfall in eastern China. Chin. Sci. Bull. 2009, 54, 4733–4741. [Google Scholar] [CrossRef] [Green Version]
- Kitoh, A.; Uchiyama, T. Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J. Meteorol. Soc. Jpn 2006, 84, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Kai, T.; Zhong-Wei, Y.; Xue-Bin, Z.; Wen-Jie, D. Simulation of precipitation in monsoon regions of China by CMIP3 models. Atmos. Ocean. Sci. Lett. 2009, 2, 194–200. [Google Scholar] [CrossRef]
- Yu, R.C.; Li, W.; Zhang, X.H.; Liu, Y.M.; Yu, Y.Q.; Liu, H.L.; Zhou, T.J. Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci. 2000, 17, 503–518. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.B.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Liu, J. Understanding future change of global monsoons projected by CMIP6 models. J. Clim. 2020, 33, 6471–6489. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Clim. 2020. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. B Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.; Fiorino, M.; Potter, G. NCEP–DOE AMIP-II Reanalysis (R-2). B Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Ha, K.J.; Moon, S.; Timmermann, A.; Kim, D. Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Horn, L.H.; Bryson, R.A. Harmonic analysis of the annual march of precipitation over the united states. Ann. Assoc. Am. Geogr. 1960, 50, 157–171. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Kinter, J.L.; Frauenfeld, O.W. A global gridded dataset of the characteristics of the rainy and dry seasons. B Am. Meteorol. Soc. 2019, 100, 1315–1328. [Google Scholar] [CrossRef]
- Boyle, S.J. Evaluation of the annual cycle of precipitation over the United States in GCMs: AMIP simulations. J. Clim. 1998, 11, 1041–1055. [Google Scholar] [CrossRef]
- Dunning, C.M.; Black, E.C.L.; Allan, R.P. The onset and cessation of seasonal rainfall over Africa. J. Geophys. Res. Atmos. 2016, 121, 11405–11424. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.W.; Hinton, B.B. Annual cycle in rainfall of the Indo-Pacific region. J. Clim. 1999, 12, 1240–1256. [Google Scholar] [CrossRef]
- Jiang, S.; Zhu, C.W.; Jiang, N. Variations in the annual cycle of the East Asian monsoon and its phase-induced interseasonal rainfall anomalies in China. Atmos. Ocean. Sci. Lett. 2020, 1–7. [Google Scholar] [CrossRef]
- Brunet, G.; Lin, H.; Derome, J. Forecast Skill of the Madden–Julian Oscillation in Two Canadian Atmospheric Models. Mon. Weather Rev. 2008, 136, 4130–4149. [Google Scholar] [CrossRef]
- Klingaman, N.P.; Woolnough, S.J. The role of air-sea coupling in the simulation of the Madden-Julian oscillation in the Hadley Centre model. Q. J. Roy Meteor. Soc. 2014, 140, 2272–2286. [Google Scholar] [CrossRef]
- Dwyer, J.G.; Biasutti, M.; Sobel, A.H. The effect of greenhouse gas–induced changes in SST on the annual cycle of zonal mean tropical precipitation. J. Clim. 2014, 27, 4544–4565. [Google Scholar] [CrossRef]
- Biasutti, M.; Sobel, A.H. Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Leung, L.R.; Lu, J.; Dong, L. Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Clim. Chang. 2018, 8, 787–792. [Google Scholar] [CrossRef]
- Biasutti, M.; Battisti, D.S.; Sarachik, E. Mechanisms controlling the annual cycle of precipitation in the tropical Atlantic sector in an atmospheric GCM. J. Clim. 2004, 17, 4708–4723. [Google Scholar] [CrossRef] [Green Version]
Model | Lon. × Lat. | Host Center/Country |
---|---|---|
BCC-CSM2-MR | 1.125° × 1.125° | Beijing Climate Center/China |
BCC-ESM1 | 2.8125° × 2.8125° | |
CanESM5 | 2.8125° × 2.8125° | Canadian Centre for Climate Modelling and Analysis/Canada National Center for Atmospheric Research/USA |
CESM2-FV2 | 2.5° × 1.895° | |
CESM2 | 1.25° × 0.9375° | |
CESM2-WACCM | 1.25° × 0.9375° | |
CNRM-CM6-1 | 1.4° × 1.4° | Centre National de Recherches Météorologiques, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique/France |
CNRM-CM6-1-HR | 0.5° × 0.5° | |
CNRM-ESM2-1 | 1.4° × 1.4° | |
FGOALS-f3-L | 1.25° × 1.0° | Institute of Atmospheric Physics, Chinese Academy of Sciences/China |
FGOALS-g3 | 2.0° × 2.25° | |
GFDL-CM4 | 1.25° × 1.0° | Geophysical Fluid Dynamics Laboratory/USA |
INM-CM4-8 | 2.0° × 1.5° | Institute of Numerical Mathematics of the Russian Academy/Russia |
INM-CM5-0 | 2.0° × 1.5° | |
IPSL-CM6A-LR | 2.5° × 1.259° | Institut Pierre Simon Laplace/France |
MIROC6 | 1.4° × 1.4° | Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology/Japan |
MPI-ESM1-2-HR | 0.9° × 0.9° | Max Planck Institute for Meteorology/Germany |
MRI-ESM2-0 | 1.125° × 1.125° | Meteorological Research Institute/Japan |
NESM3 | 1.875° × 1.875° | Nanjing University of Information Science and Technology/China |
NorESM2-LM | 2.5° × 1.875° | Bjerknes Centre for Climate Research, Norwegian Meteorological Institute/Norway |
SAM0-UNICON | 1.25° × 0.9375° | Seoul National University/Korea |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhu, C.; Liu, B.; Jiang, S. Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models. Atmosphere 2021, 12, 24. https://doi.org/10.3390/atmos12010024
Yan Y, Zhu C, Liu B, Jiang S. Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models. Atmosphere. 2021; 12(1):24. https://doi.org/10.3390/atmos12010024
Chicago/Turabian StyleYan, Yuhan, Congwen Zhu, Boqi Liu, and Song Jiang. 2021. "Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models" Atmosphere 12, no. 1: 24. https://doi.org/10.3390/atmos12010024
APA StyleYan, Y., Zhu, C., Liu, B., & Jiang, S. (2021). Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models. Atmosphere, 12(1), 24. https://doi.org/10.3390/atmos12010024