Culture Media and Sampling Collection Method for Aspergillus spp. Assessment: Tackling the Gap between Recommendations and the Scientific Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Samples
2.2. Sampling and Characterization of Viable Bioburden
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, H.; Martinez, L.R. Relationship of environmental disturbances and the infectious potential of fungi. Microbiology 2018, 164, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Leung, G.M.; Tang, J.W.; Yang, X.; Chao, C.Y.H.; Lin, J.Z.; Lu, J.W.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment—A multidisciplinary systematic review. Indoor Air 2007, 17, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Eames, I.; Tang, J.W.; Li, Y.; Wilson, P. Airborne transmission of disease in hospitals. J. R. Soc. Interface 2009, 6, S697–S702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douwes, J. (1–>3)-Beta-D-glucans and respiratory health: A review of the scientific evidence. Indoor Air 2005, 15, 160–169. [Google Scholar] [CrossRef]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Heederik, D.; Von Mutius, E. Does diversity of environmental microbial exposure matter for the occurrence of allergy and asthma? J. Allergy Clin. Immunol. 2012, 130, 44–50. [Google Scholar] [CrossRef]
- Sabino, R.; Veríssimo, C.; Viegas, C.; Viegas, S.; Brandão, J.; Alves-Correia, M.; Borrego, L.M.; Clemons, K.V.; Stevens, D.A.; Richardson, M. The role of occupational Aspergillus exposure in the development of diseases. Med. Mycol. 2019, 57, S196–S205. [Google Scholar] [CrossRef]
- Skórska, C.; Sitkowska, J.; Krysinska-Traczyk, E.; Cholewa, G.; Dutkiewicz, J. Exposure to airborrne microorganisms, dust and endotoxin during processing of valerian roots on farms. Ann. Agric. Environ. Med. 2005, 12, 119–126. [Google Scholar]
- Zielinska-Jankiewicz, K.; Kozajda, A.; Piotrowka, M.; Szadkowska-Stanczyk, I. Microbiological contamination with moulds in work environment in libraries and archive storage facilities. Ann. Agric. Environ. Med. 2008, 15, 71–78. [Google Scholar]
- Straumfors, A.; Corbin, M.; McLean, D.; Mannetje, A.; Olsen, R.; Afanou, A.; Daae, H.L.; Skare, Ø.; Ulvestad, B.; Johnsen, H.L.; et al. Exposure Determinants of Wood Dust, Microbial Components, Resin Acids and Terpenes in the Saw- and Planer Mill Industry. Ann. Work Expo. Health 2020, wxz096. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Carolino, E.; Sabino, R.; Viegas, S.; Veríssimo, C. Fungal Contamination in Swine: A Potential Occupational Health Threat. J. Toxicol. Environ. Health Part A 2013, 76, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Faria, T.; Aranha Caetano, L.; Carolino, E.; Quintal Gomes, A.; Viegas, S. Aspergillus spp. prevalence in different occupational settings. J. Occup. Environ. Hyg. 2017, 14, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Almeida, B.; Monteiro, A.; Aranha Caetano, L.; Carolino, E.; Quintal-Gomes, A.; Twarużek, M.; Kosicki, R.; Marchand, G.; Viegas, S. Bioburden in healthcare centers: Is the compliance with Portuguese legislation enough to prevent and control infection? Build. Environ. 2019, 160, 106226. [Google Scholar] [CrossRef]
- Viegas, C.; Almeida, B.; Aranha Caetano, L.; Afanou, A.; Straumfors, A.; Veríssimo, C.; Gonçalves, P.; Sabino, R. Algorithm to assess the presence of Aspergillus fumigatus resistant strains: The case of Norwegian sawmills. Int. J. Environ. Health Res. 2020. [Google Scholar] [CrossRef]
- Viegas, C.; Fleming, G.; Kadir, A.; Almeida, B.; Aranha Caetano, L.; Quintal Gomes, A.; Twaruzek, M.; Kosicki, R.; Viegas, S.; Coggins, A.M. Occupational exposures to organic dust in Irish bakeries and a pizzeria restaurant. Microorganisms 2020, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Twarużek, M.; Dias, M.; Almeida, B.; Carolino, E.; Kosicki, R.; Soszczyńska, E.; Grajewski, J.; Aranha Caetano, L.; Viegas, S. Assessment of the microbial contamination of mechanical protection gloves used on waste sorting industry: A contribution for the risk characterization. Environ. Res. 2020, 189, 109881. [Google Scholar] [CrossRef]
- Madsen, A.M.; Frederiksen, M.W.; Jacobsen, M.H.; Tendal, K. Towards a risk evaluation of workers’ exposure to handborne and airborne microbial species as exemplified with waste collection workers. Environ. Res. 2020, 183, 109177. [Google Scholar] [CrossRef]
- Varga, J.; Baranyi, N.; Chandrasekaran, M.; Vágvölgyi, C.; Kocsubé, S. Mycotoxin producers in the Aspergillus genus: An update. Acta Biol. Szeged. 2015, 59, 151–167. [Google Scholar]
- Jeanvoine, A.; Rocchi, S.; Reboux, G.; Crini, N.; Crini, G.; Millon, L. Azole-resistant Aspergillus fumigatus in sawmills of Eastern France. J. Appl. Microbiol. 2017, 123, 172–184. [Google Scholar] [CrossRef]
- Snelders, E.; van der Lee, H.; Kuijpers, J.; Rijs, A.J.M.M.; Varga, J.; Samson, R.A.; Mellado, E.; Donders, A.R.T.; Melchers, W.J.G.; Verweij, P.E. Emergence of azole resistance in A. fumigatus and spread of a single resistance mechanism. PLoS Med. 2008, 5, e219. [Google Scholar] [CrossRef]
- Chowdhary, A.; Kathuria, S.; Xu, J.; Meis, J. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 2013, 9, e1003633. [Google Scholar] [CrossRef]
- Verweij, P.E.; Kema, G.H.J.; Zwaan, B.; Melchers, W.J.G. Triazole fungicides and the selection of resistance to medical triazoles in the opportunistic mould Aspergillus fumigatus. Pest Manag. Sci. 2013, 69, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Dillon, H.K.; Boling, D.K.; Miller, J.D. Comparison of detection methods for Aspergillus fumigatus in environmental air samples in an occupational environment. J. Occup. Environ. Hyg. 2007, 4, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Burge, H.A.; Otten, J.A. Chapter 19 Fungi. In Bioaerosols: Assessment and Control; Macher, J., Ed.; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 1999; Volume 19, pp. 1–13. [Google Scholar]
- Viegas, C.; Viegas, S.; Gomes, A.; Täubel, M.; Sabino, R. (Eds.) Exposure to Microbiological Agents in Indoor and Occupational Environments; Springer: Berlin/Heidelberg, Germany, 2017; pp. 109–128. [Google Scholar]
- Burge, H.A.; Chatigny, M.; Feeley, J.; Kreiss, K.; Morey, P.; Otten, J.; Peterson, K. Guidelines for assessment and sampling of saprophytic bioaerosols in the indoor environment. Appl. Ind. Hyg. 1987, 2, R10–R16. [Google Scholar]
- Wu, P.; Su, H.J.; Ho, H. A comparison of sampling media for environmental viable fungi collected in a hospital environment. Environ. Res. 2000, 82, 253–257. [Google Scholar] [CrossRef]
- Hung, L.L.; Miller, J.D.; Dillon, H.K. Field Guide for the Determination of Biological Contaminants in Environmental Samples, 2nd ed.; American Industrial Hygiene Association: Fairfax, VA, USA, 2005; pp. 93–100. [Google Scholar]
- Agência Portuguesa para o Ambiente. Qualidade do Ar Interior—Um Guia Técnico; Agência Portuguesa para o Ambiente: Amadora, Portugal, 2009.
- Smid, T.; Schokkin, E.; Boleij, J.S.M.; Heederik, D. Enumeration of viable fungi in occupational environments: A comparison of samplers and media. Am. Ind. Hyg. Assoc. J. 1989, 50, 235–239. [Google Scholar] [CrossRef]
- Verhoeff, A.P.; Van Wijnen, J.H.; Boleij, J.S.M.; Brunekreef, B.; Van Reenen-Hoekstra, E.S.; Samson, R.A. Enumeration and identification of airborne viable mould propagules in houses: A field comparison of selected techniques. Allergy 1990, 45, 275–284. [Google Scholar] [CrossRef]
- Chao, H.J.; Milton, D.K.; Schwartz, J.; Burge, H.A. Dustborne fungi in large office buildings. Mycopathologia 2002, 154, 93–106. [Google Scholar] [CrossRef]
- Degois, J.; Clerc, F.; Simon, X.; Bontemps, C.; Leblond, P.; Duquenne, P. First Metagenomic Survey of the Microbial Diversity in Bioaerosols Emitted in Waste Sorting Plants. Ann. Work Expo. Health 2017, 1–11. [Google Scholar] [CrossRef]
- Croston, T.L.; Nayak, A.P.; Lemons, A.R.; Goldsmith, W.; Gu, J.K.; Germolec, D.R.; Beezhold, D.H.; Green, B.J. Influence of Aspergillus fumigatus conidia viability on murine pulmonary 28 micro RNA and m RNA expression following subchronic inhalation exposure. Clin. Exp. Allergy 2016, 46, 1315–1327. [Google Scholar] [CrossRef] [Green Version]
- Timm, M.; Madsen, A.M.; Hansen, J.V.; Moesby, L.; Hansen, E.W. Assessment of the total inflammatory potential of bioaerosols by using a granulocyte assay. Appl. Environ. Microbiol. 2009, 75, 7655–7662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, S.; Aranha Caetano, L.; Korkalainen, L.; Faria, T.; Pacífico, C.; Carolino, E.; Quintal Gomes, A.; Viegas, C. Cytotoxic and inflammatory potential of air samples from occupational settings with exposure to organic dust. Toxics 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C.; Faria, T.; Monteiro, A.; Aranha Caetano, L.; Carolino, E.; Quintal Gomes, A.; Viegas, S. A Novel Multi-Approach Protocol for the Characterization of Occupational Exposure to Organic Dust—Swine Production Case Study. Toxics 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Hoog, D.; Guarro, J.; Gene, G.; Figueras, M. Atlas of Clinical Fungi—The Ultimate Bench Tool for Diagnosis, Version 4.1.4; Utr. Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2016. [Google Scholar]
- Chen, A.J.; Frisvad, J.C.; Sun, B.D.; Varga, J.; Kocsubé, S.; Dijksterhuis, J.; Kim, D.H.; Hong, S.B.; Houbraken, J.; Samson, R.A. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud. Mycol. 2016, 84, 1–118. [Google Scholar] [CrossRef] [Green Version]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [Green Version]
- Bergwall, C.; Stehn, B. Comparison of selective mycological agar media for the isolation and enumeration of xerophilic moulds and osmotolerant yeasts in granulated white sugar. Zuckerindustrie 2002, 127, 259–264. [Google Scholar]
- Corry, J.E.L.; Curtis, G.D.W.; Baird, R.M. Handbook of Culture Media for Food and Water Microbiology, 3rd ed.; Royal Society of Chemistry: London, UK, 2011; ISBN 1847551459, 9781847551450. [Google Scholar]
- Viegas, C.; Faria, T.; Meneses, M.; Carolino, E.; Viegas, S.; Quintal Gomes, A.; Sabino, R. Analysis of Surfaces for Characterization of Fungal Burden—Does it Matter? Int. J. Occup. Med. Environ. Health 2016, 29, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Badyda, A.; Gayer, A.; Czechowski, P.; Majewski, G.; Dąbrowiecki, P. Pulmonary function and incidence of selected respiratory diseases depending on the exposure to ambient PM10. Int. J. Mol. Sci. 2016, 17, 1954. [Google Scholar] [CrossRef] [Green Version]
- American Conference of Governmental Industrial Hygienists (ACGIH). Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2009.
- Cozen, W.; Avol, E.; Diaz-Sanchez, D.; McConnell, R.; Gauderman, W.J.; Cockburn, M.G.; Mack, T.M. Use of an electrostatic dust cloth for self-administered home allergen collection. Twin Res. Hum. Genet. 2008, 11, 150–155. [Google Scholar] [CrossRef]
- Kilburg-Basnyat, B.; Metwali, N.; Thorne, P.S. Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: Effect of mailing, placement, heating and electrostatic charge. J. Occup. Environ. Hyg. 2016, 13, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Noss, I.; Wouters, I.M.; Visser, M.; Heederik, D.J.J.; Thorne, P.S.; Brunekreef, B.; Doekes, G. Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment. Appl. Environ. Microbiol. 2008, 74, 5621–5627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normand, A.C.; Vacheyrou, M.; Sudre, B.; Heederik, D.J.J.; Piarroux, R. Assessment of dust sampling methods for the study of cultivable microorganism exposure in stables. Appl. Environ. Microbiol. 2009, 75, 7617–7623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, A.M.; Matthiesen, C.B.; Frederiksen, M.W.; Frederiksen, M.; Frankel, M.; Spilak, M.; Timm, M. Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J. Environ. Monit. 2012, 14, 3230–3239. [Google Scholar] [CrossRef] [PubMed]
- Dorado-Garcia, A.; Bos, M.E.; Graveland, H.; Van Cleef, B.A.; Verstappen, K.M.; Kluytmans, J.A.; Wagenaar, J.A.; Heederik, D.J. Risk factors for persistence of livestock-associated MRSA and environmental exposure in veal calf farmers and their family members: An observational longitudinal study. BMJ Open 2013, 3, e003272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feld, L.; Bay, H.; Angen, Ø.; Larsen, A.R.; Madsen, A.M. Survival of LA-MRSA in dust from swine farms. Ann. Work Expo. Health 2018, 62, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine. Damp Indoor Spaces and Health; The National Academies Press: Washington, DC, USA, 2004. [Google Scholar]
- Cabo Verde, S.; Almeida, S.M.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at diferente hospital sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef]
- Hicks, J.B.; Lu, E.T.; De Guzman, R.; Weingart, M. Fungal types and concentrations from settled dust in normal residences. J. Occup. Environ. Hyg. 2005, 2, 481–492. [Google Scholar] [CrossRef]
- Hodgson, M.; Scott, R. Prevalence of fungi in carpet dust samples. In Bioaerosols, Fungi and Mycotoxins: Health Effects, Assessment, Prevention and Control; Johanning, E., Ed.; Boyd Printing Company: Albany, NY, USA, 1999; pp. 268–274. [Google Scholar]
Indoor/Occupational Environment * | Sampling Approaches | n (%) |
---|---|---|
Bakeries (n = 91) | EDC | 10 (11.0%) |
Air impaction | 28 (30.8%) | |
Air impingement | 6 (6.6%) | |
Filter air sampler | 5 (5.5%) | |
Surface swab | 20 (22.0%) | |
Taxi (n = 17) | HVAC filter | 17 (100%) |
Veterinary clinics (n = 6) | Air impaction | 6 (100%) |
Dairies (n = 29) | Air impaction | 29 (100%) |
Dwellings (n = 184) | Air impaction | 51 (27.7%) |
EDC | 133 (72.3%) | |
Elderly care centers (n = 11) | Air impaction | 11 (100%) |
Elementary school (n = 2) | EDC | 2 (100%) |
College indoors (n = 17) | Air impaction | 13 (76.5%) |
Surface swab | 4 (23.5% | |
Firefighters’ ambulances (n = 16) | Air impaction | 9 (56.3%) |
Settled dust | 4 (25.0%) | |
Surface swab | 3 (18.8%) | |
Healthcare facilities (n = 231) | Air impaction | 136 (58.9%) |
HVAC filter | 6 (2.6%) | |
EDC | 20 (8.7%) | |
Settled dust | 16 (6.9%) | |
Surface swab | 11 (4.8%) | |
Vacuuming bag | 3 (1.3%) | |
Ventilation grid–swab | 39 (16.9%) | |
Sawmills (n = 10) | Filter air sampler | 10 (100%) |
Swine (n = 26) | Air impaction | 22 (84.6%) |
Surface swab | 4 (15.4%) | |
Thermal baths (n = 17) | Air impaction | 15 (88.2%) |
EDC | 2 (11.8%) | |
Waste-sorting plant (n = 488) | HVAC filter | 8 (1.6%) |
Filter air sampler | 75 (15.4%) | |
FRPD | 280 (58.0%) | |
MPG | 125 (25.6%) |
Aspergillus Sections | Media | Sampling Approach | n (%) | Indoor Environment | n (%) | |
---|---|---|---|---|---|---|
MEA | DG18 | |||||
n (%) | n (%) | |||||
Candidi | 36 (5.8%) | 79 (14.7%) | EDC | 167 (14.5%) | Bakeries | 91 (7.9%) |
Circumdati | 40 (6.5%) | 117 (21.8%) | Air impaction | 325 (28.2%) | Dwellings | 199 (17.3%) |
Nigri | 246 (39.9%) | 49 (9.1%) | Settled dust | 48 (4.2%) | Air | 8 (0.7%) |
Fumigati | 163 (26.4%) | 95 (17.7%) | HVAC filter | 31 (2.7%) | Taxi | 17 (1.5%) |
Versicolores | 55 (8.9%) | 62 (11.6%) | Surface swab | 42 (3.6%) | College indoors | 17 (1.5%) |
Aspergilli | 22 (3.6%) | 80 (14.9%) | Air impingement | 6 (0.5%) | Swine | 26 (2.3%) |
Terrei | 2 (0.2%) | 0 (0.0%) | Filter air sampler | 90 (7.8%) | Dairies | 29 (2.5%) |
Flavi | 35 (5.7) | 48 (9.0%) | MPG | 125 (10.8%) | Veterinary clinics | 6 (0.5%) |
Nidulantes | 5 (0.8%) | 1 (0.2%) | FRPD | 280 (24.3%) | Elementary school | 2 (0.2%) |
Clavati | 3 (0.5%) | 2 (0.4%) | Ventilation grid—swab | 39 (3.4%) | Healthcare facility | 231 (20.0%) |
Usti | 2 (0.3%) | 2 (0.4%) | Elderly care center | 11 (1.0%) | ||
Cremei | 1 (0.2%) | 0 (0.0%) | Waste sorting | 483 (41.9%) | ||
Restricti | 7 (1.1%) | 1 (0.2%) | Thermal baths | 17 (1.5%) | ||
Firefighters’ ambulances | 16 (1.4%) | |||||
Total | 617 | 536 | Total | 1153 | Total | 1153 |
Targeted Aspergillus Sections | Culture Media to Use | Indoor/Occupational Environment | Sampling Approach |
---|---|---|---|
Aspergilli | DG18 | Firefighters’ ambulances, bakeries, and swine | * |
Candidi | DG18 | Swine, healthcare facility, and taxi | * |
Circumdati | DG18 | * | * |
Flavi | * | Elderly care center and waste-sorting plant | FRPD |
Fumigati | MEA | Waste-sorting plant, veterinary clinics, and dairies | FRPD |
Nigri | MEA | Dwellings and dairies | Ventilation grid—swabs, and filter air sampler |
Versicolores | * | * | Surface swabs |
Terrei, Nidulantes, Clavati, Usti, Cremei, Restricti | * | College | EDC and surface swabs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viegas, C.; Dias, M.; Carolino, E.; Sabino, R. Culture Media and Sampling Collection Method for Aspergillus spp. Assessment: Tackling the Gap between Recommendations and the Scientific Evidence. Atmosphere 2021, 12, 23. https://doi.org/10.3390/atmos12010023
Viegas C, Dias M, Carolino E, Sabino R. Culture Media and Sampling Collection Method for Aspergillus spp. Assessment: Tackling the Gap between Recommendations and the Scientific Evidence. Atmosphere. 2021; 12(1):23. https://doi.org/10.3390/atmos12010023
Chicago/Turabian StyleViegas, Carla, Marta Dias, Elisabete Carolino, and Raquel Sabino. 2021. "Culture Media and Sampling Collection Method for Aspergillus spp. Assessment: Tackling the Gap between Recommendations and the Scientific Evidence" Atmosphere 12, no. 1: 23. https://doi.org/10.3390/atmos12010023
APA StyleViegas, C., Dias, M., Carolino, E., & Sabino, R. (2021). Culture Media and Sampling Collection Method for Aspergillus spp. Assessment: Tackling the Gap between Recommendations and the Scientific Evidence. Atmosphere, 12(1), 23. https://doi.org/10.3390/atmos12010023