Improved Hargreaves Model Based on Multiple Intelligent Optimization Algorithms to Estimate Reference Crop Evapotranspiration in Humid Areas of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Weather Data
2.2. ET0 Estimation Model
2.2.1. FAO-56 Penman–Monteith Model
2.2.2. Priestley–Taylor Model
2.2.3. Imark–Allen (IK)
2.2.4. Jensen–Haise Model (JH)
2.2.5. Hargreaves Model
2.3. Intelligent Optimization Method
2.3.1. Artificial Bee Colony
2.3.2. Differential Evolution Algorithm
- (1)
- Initialization
- (2)
- Variation
- (3)
- Crossover
- (4)
- Selection
2.3.3. Particle Swarm Optimization
2.4. Parameter Optimization Process
- (1)
- Divide the calibration period and inspection period. The continuous daily meteorological data of each station, in this case, are divided into two parts used as calibration samples (L1) and validation samples (L2).
- (2)
- Determine the feasible region of the variable to be optimized. After analysis and debugging, the three parameters for this article were respectively taken: , m and .
- (3)
- Determine the optimization objective function. To ensure that the Hargreaves model has high simulation accuracy and generalization ability at the same time after correction, the minimization of the following function F is taken as the optimization objective of the three optimization algorithms.
- (4)
- The ABC, DE and PSO optimize methods are used with the Hargreaves model to find the minimum value of F function. The undetermined parameters are C, m, a, and the search interval are determined in the second step. The FAO recommended values are 0.0023, 17.8 and 0.5, respectively. When the F function is the smallest, the convergence is the best and the optimal result is output. The specific optimization process is shown below Figure 2:
2.5. Performance Evaluation
3. Results
3.1. Calibration of Hargreaves
3.2. Performances of HG Models on a Daily Basis
3.3. Performances of HG Models on a Monthly Basis
4. Discussion
5. Conclusions
- (1)
- On daily scale, the calibrated HG models were more accurate compared with the 4 physical models for daily ET0 estimation at the 4 sub-zones of southwest China. Among them, PSO-HG model showed the highest accuracy in NSP, YGB, SB and GB, with average R2 of 0.83, 0.82, 0.80 and 0.86, average RRMSE of 0.25 mm/d, 0.23 mm/d, 0.23 mm/d and 0.21 mm/d, and average MAE of 0.25 mm/d, 0.23 mm/d, 0.23 mm/d and 0.21 mm/d, and GPI of −0.03, 0.07, 0.26 and 0.41, respectively. In SW research region, the PSO-HG model had the best estimation accuracy for daily ET0, followed by ABC-HG and DE-HG models, with average R2 of 0.83, 0.82 and 0.82, average RRMSE of 0.24 mm/d, 0.25 mm/d and 0.25 mm/d, average MAE of 0.52 mm/d, 0.57 mm/d and 0.55 mm/d, and average GPI of 0.14, 0.13 and 0.04, respectively.
- (2)
- On a monthly scale, the calibrated HG model (RE < 18%) showed a better performance than the 4 physical models (RE > 18%) at the 4 sub-zones. PSO-HG model showed the best performance for ET0-mad estimation in NSP, YGB, SB and GB, with average RE of 3.48%, −1.64%, 6.10% and −0.92%. In SW research region, the PSO-HG model showed the best performance for ET0-mad estimation, followed by ABC-HG and DE-HG model, with R2 median of 0.96, 0.95 and 0.94, RRMSE median of 0.16 mm/m, 0.17 mm/m and 0.18 mm/m, MAE median of 0.46 mm/m, 0.50 mm/m and 0.55 mm/m, and GPI median of 1.13, 0.47 and 0.35, respectively.
- (3)
- In the southwest humid region, the HG model calibrated by the optimization algorithms is compared with the HG, PT, Imark–Allen and JH model. It can be said that the ET0 estimated by optimized models has higher accuracy, and the PSO-HG model has the highest estimation accuracy. Based on these outcomes, PSO-HG model can be accurately recommended to estimate the southwest humid ET0 accurately.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Wu, L.; Zhang, F. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 2016, 542, 923–937. [Google Scholar] [CrossRef]
- Gao, Z.D.; He, J.S.; Dong, K.B.; Bian, X.D.; Li, X. Sensitivity study of reference crop evapotranspiration during growing season in the West Liao River basin, China. Theor. Appl. Climatol. 2016, 124, 865–881. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Shiri, J.; Kisi, O.; Landeras, G.; Lopez, J.J.; Nazemi, A.H.; Stuyt, L.C.P.M. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J. Hydrol. 2012, 414, 302–316. [Google Scholar] [CrossRef]
- Abdullah, S.S.A.; Malek, M.A.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme learning machines: A new approach for prediction of reference evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guide Lines for Computing Crop Evapotranspiration; FAO Irrigation and Drainage: Rome, Italy, 1998; p. 56. [Google Scholar]
- Han, H.; Bai, Y.; Zhang, X. Study on applicabilities and modifications of several methods for estimating reference crop evapotranspiration in Guizhou Province. Water Resour. Hydropower Eng. 2018, 10, 198–204. [Google Scholar]
- Ai, Z.; Yang, Y. Modification and Validation of Priestley-Taylor Model for Estimating Cotton Evapotranspiration under Plastic Mulch Condition. J. Hydrometeorol. 2016, 17, 1281–1293. [Google Scholar] [CrossRef]
- Rivero, M.; Orozco, S.; Sellschopp, F.S.; Loera-Palomo, R. A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico. Renew. Energy 2017, 114, 1340–1352. [Google Scholar] [CrossRef]
- Jabulani, J. Evaluation of the potential of using the modified Jensen-Haise model as an irrigation scheduling technique in Zimbabwe. Electron. J. Environ. Agric. Food Chem. 2008, 7, 2771–2778. [Google Scholar]
- Zhang, Q.; Cui, N.; Yu, F. Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China. J. Hydrol. 2018, 566, 264–273. [Google Scholar]
- Yang, Y.; Cui, Y.; Bai, K. Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts. Agric. Water Manag. 2019, 211, 70–80. [Google Scholar] [CrossRef]
- Didari, S.; Ahmadi, S.H. Calibration and evaluation of the FAO56-Penman-Monteith, FAO24-radiation, and Priestly-Taylor reference evapotranspiration models using the spatially measured solar radiation across a large arid and semi-arid area in southern Iran. Theor. Appl. Climatol. 2019, 136, 441–445. [Google Scholar] [CrossRef]
- Pretheep-Kumar, P.; Tilak, M.; Durairasu, P. A model for predicting the infestation of mealybugs in jatropha based on the weather parameters. Int. J. Agric. 2013, 3, 608–619. [Google Scholar]
- Mendicino, G.; Senatore, A. Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in Southern Italy. J. Irrig. Drain. Eng. 2013, 139, 349–362. [Google Scholar] [CrossRef]
- Virginia, G.; Phillip, B.; Clifford, E. A Bayesian Dynamic Method to Estimate the Thermophysical Properties of Building Elements in All Seasons, Orientations and with Reduced Error. Energies 2018, 11, 802. [Google Scholar]
- Cui, W.; Sun, Z.; Yang, J. The temperature model of the thermal re-radiation model in multilayer insulation systems. Open Astron. 2020, 29, 32–39. [Google Scholar] [CrossRef]
- Antwerpen, H.J.V.; Greyvenstein, G.P. Evaluation of a detailed radiation heat transfer model in a high temperature reactor systems simulation model. Nucl. Eng. Des. 2008, 238, 2985–2994. [Google Scholar] [CrossRef]
- Irwan, Y.M.; Daut, I.; Safwati, I. An Estimation of Solar Characteristic in Kelantan Using Hargreaves Model. Energy Procedia 2013, 36, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Valiantzas, J.D. Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based Hargreaves-Samani and other methodologies. Agric. Water Manag. 2018, 208, 326–334. [Google Scholar] [CrossRef]
- Almorox, J.; Elisei, V.; Aguirre, M.E. Calibration of Hargreaves model to estimate reference evapotranspiration in Coronel Dorrego, Argentina. Rev. Fac. Cienc. Agrar. 2012, 44, 101–109. [Google Scholar]
- Liu, X.-Y.; Li, Y.-Z.; Zhong, X.-L. Evaluation of 16 reference crop evapotranspiration (ET0) models based on daily measured values of weighing lysimeter. Agrometeorol. China 2017, 38, 278–291. [Google Scholar]
- Almorox, J.; Grieser, J. Calibration of the Hargreaves–Samani method for the calculation of reference evapotranspiration in different Kppen climate classes. Hydrol. Res. 2016, 47, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modeling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
- Feng, Y.; Jia, Y.; Zhang, Q.; Gong, D.; Cui, N. National-scale assessment of pan evaporation models across different climatic zones of China. J. Hydrol. 2018, 564, 314–328. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, Y.; Gong, D. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
- Martí, P.; Gonzalez-Altozano, P.; Lopez-Urrea, R.; Mancha, L.A.; Shiri, J. Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agric. Water Manag. 2015, 149, 81–90. [Google Scholar] [CrossRef]
- Martí, P.; Zarzo, M.; Vanderlinden, K.; Girona, J. Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain. J. Hydrol. 2015, 529, 1713–1724. [Google Scholar] [CrossRef]
- Talaee, P.H. Performance evaluation of modified versions of Hargreaves equation across a wide range of Iranian climates. Meteorol. Atmos. Phys. 2014, 126, 65–70. [Google Scholar] [CrossRef]
- Martinez, C.A.; Tejero, J.M. A wind-based qualitative calibration of the Hargreaves ET 0 estimation equation in semiarid regions. Agric. Water Manag. 2004, 64, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Zhang, Z.Y. Method for calculating Lhasa reference crop evapotranspiration by modifying Hargreaves. Adv. Water Sci. 2009, 20, 614–618. (In Chinese) [Google Scholar]
- Perera, K.C.; Andrew, W.W.; Bandara, N.; Biju, G. Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs. Agric. For. Meteorol. 2014, 194, 50–63. [Google Scholar] [CrossRef]
- Nakayama, K.; Pruitt, W.O.; Chandio, B.A. Some Aspects of the Priestley and Taylor Model to Estimate Evapotranspiration. Tech. Bull. Fac. Hortic. Chiba Univ. 1983, 32, 25–30. [Google Scholar]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climate. J. Irrig. Drain. Eng. 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Eng. 1963, 89, 15–41. [Google Scholar]
- Samani, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Trajkovic, S. Hargreaves versus Penman-Monteith under Humid conditions. J. Irrig. Drain. Eng. 2007, 133, 38–42. [Google Scholar] [CrossRef]
- Feng, Y.; Jia, Y.; Cui, N. Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agric. Water Manag. 2017, 181, 1–9. [Google Scholar] [CrossRef]
- Shao, P.; Yang, L.; Tan, L. Enhancing artificial bee colony algorithm using refraction principle. Soft Comput. 2020, 24, 15291–15306. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Zhang, C. A Heuristic Scout Search Mechanism for Artificial Bee Colony Algorithm. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery; Springer: Cham, Switzerland, 2019; pp. 271–278. [Google Scholar]
- Wu, B.; Qian, C.; Ni, W. Hybrid harmony search and artificial bee colony algorithm for global optimization problems. Comput. Math. Appl. 2012, 64, 2621–2634. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, C.; Kisi, O.; Akay, B. Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrig. Sci. 2011, 29, 431–441. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution–A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Roman, P. Application of the Differential Evolution for simulation of the linear optical response of photosynthetic pigments. J. Comput. Phys. 2018, 372, 603–615. [Google Scholar]
- Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–30 May 2001. [Google Scholar]
- Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 397–407. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Ma, X.; Zhou, H.; Zhang, F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew. Energy 2020, 145, 2034–2045. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Review and statistical analysis of different global solar radiation sunshine models. Renew. Sustain. Energy Rev. 2015, 52, 1869–1880. [Google Scholar] [CrossRef]
- Wu, L. Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: Application in contrasting climates of China. J. Hydrol. 2019, 577, 123960. [Google Scholar] [CrossRef]
- Hai, T.; Lamine, D.; Ansoumana, B. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [Google Scholar]
- Yin, Z.; Wen, X.; Feng, Q.; He, Z.; Zou, S.; Yang, L. Integrating genetic algorithm and support vector machine for modeling daily reference evapotranspiration in a semi-arid mountain area. Hydrol. Res. 2017, 48, 1177–1191. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar]
- Shamshirband, S.; Amirmojahedi, M.; Gocić, M.; Akib, S.; Petković, D.; Piri, J.; Trajkovic, S. Estimation of reference evapotranspiration using neural networks and cuckoo search algorithm. J. Irrig. Drain. Eng. 2015, 142, 04015044. [Google Scholar] [CrossRef]
Zone | Station | Lat | Lon | H | Tmean | DTR | Ra | Zone | Station | Lat | Lon | H | Tmean | DTR | Ra |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°) | (°) | (m) | °C | °C | MJ/m2 d | (°) | (°) | (m) | °C | °C | MJ/m2 d | ||||
NSP | 1. Batang | 30.00 | 99.10 | 2589.20 | 6.33 | 14.36 | 30.96 | YGP | 1. Napo | 23.42 | 105.83 | 794.10 | 19.88 | 7.74 | 33.18 |
2. Daocheng | 29.05 | 100.30 | 3727.70 | 5.61 | 15.59 | 31.72 | 2. Anshun | 26.25 | 105.90 | 1431.10 | 14.82 | 6.81 | 32.50 | ||
3. Dege | 31.80 | 98.58 | 3184.00 | 8.13 | 15.10 | 30.98 | 3. Bijie | 27.30 | 105.28 | 1510.60 | 13.86 | 8.09 | 32.23 | ||
4. Emeishan | 29.52 | 103.33 | 3047.40 | 4.08 | 7.16 | 31.62 | 4. Dushan | 25.83 | 107.55 | 1013.30 | 15.87 | 7.23 | 32.66 | ||
5. Ganzi | 31.62 | 100.00 | 3393.50 | 7.00 | 14.63 | 30.94 | 5. Guiyang | 26.58 | 106.73 | 1223.80 | 15.85 | 7.52 | 32.45 | ||
6. Jiulong | 29.00 | 101.50 | 2987.30 | 10.27 | 14.43 | 31.70 | 6. Kaili | 26.60 | 107.98 | 720.30 | 16.68 | 7.93 | 32.44 | ||
7. Kangding | 30.05 | 101.97 | 2615.70 | 8.20 | 9.11 | 31.41 | 7. Luodian | 25.43 | 106.77 | 440.30 | 20.73 | 9.26 | 32.72 | ||
8. Litang | 30.00 | 100.27 | 3948.90 | 4.49 | 13.62 | 31.50 | 8. Meitan | 27.77 | 107.47 | 792.20 | 15.81 | 7.26 | 32.16 | ||
9. Maerkang | 31.90 | 102.23 | 2664.40 | 10.59 | 16.11 | 30.96 | 9. Panxian | 25.72 | 104.47 | 1800.00 | 15.94 | 9.20 | 32.68 | ||
10. Muli | 27.93 | 101.27 | 2426.50 | 13.50 | 12.66 | 32.10 | 10. Qianxi | 27.03 | 106.02 | 1231.40 | 14.83 | 7.64 | 32.27 | ||
11. Ruoergai | 33.58 | 102.97 | 3439.60 | 2.30 | 14.37 | 30.41 | 11. Ronjiang | 25.97 | 108.53 | 285.70 | 19.43 | 8.69 | 32.64 | ||
12. Songpan | 32.65 | 103.57 | 2850.70 | 7.54 | 14.38 | 30.71 | 12. Sansui | 26.97 | 108.67 | 626.90 | 15.83 | 8.08 | 32.39 | ||
13. Xiaojin | 31.00 | 102.35 | 2369.20 | 13.33 | 13.56 | 31.13 | 13. Sinan | 27.95 | 108.25 | 416.30 | 18.10 | 7.38 | 32.13 | ||
GB | 1. Baise | 23.90 | 106.60 | 173.50 | 23.01 | 9.07 | 33.11 | 14. Tongzi | 28.13 | 106.83 | 972.00 | 15.47 | 7.12 | 31.99 | |
2. Beihai | 21.45 | 109.13 | 12.80 | 23.37 | 6.51 | 33.62 | 15. Tongren | 27.72 | 109.18 | 279.70 | 17.95 | 8.10 | 32.16 | ||
3. Dongxing | 21.53 | 107.97 | 22.10 | 23.30 | 6.44 | 33.61 | 16. Wangmo | 25.18 | 106.08 | 566.80 | 20.36 | 9.43 | 32.76 | ||
4. Duan | 23.93 | 108.10 | 170.80 | 22.12 | 7.01 | 33.10 | 17. Weining | 26.87 | 104.28 | 2237.50 | 11.78 | 9.29 | 32.40 | ||
5. Guilin | 25.32 | 110.30 | 164.40 | 19.76 | 7.33 | 32.71 | 18. Xishui | 28.33 | 106.22 | 1180.20 | 13.84 | 6.71 | 31.96 | ||
6. Guiping | 23.40 | 110.08 | 42.50 | 22.42 | 7.00 | 33.18 | 19. Xingyi | 25.43 | 105.18 | 1378.50 | 16.20 | 8.12 | 32.72 | ||
7. Hechi | 24.70 | 108.03 | 260.20 | 21.31 | 7.45 | 32.90 | 20. Huili | 26.65 | 102.25 | 1787.30 | 16.06 | 12.22 | 32.41 | ||
8. Hexian | 24.42 | 111.53 | 108.80 | 20.85 | 8.27 | 32.94 | 21. Leibo | 28.27 | 103.58 | 1255.80 | 13.52 | 6.44 | 31.94 | ||
9. Jingxi | 23.13 | 106.42 | 739.90 | 20.08 | 7.20 | 33.22 | 22. Yanyuan | 27.43 | 101.52 | 2545.00 | 13.12 | 12.03 | 32.21 | ||
10. Laibin | 23.75 | 109.23 | 84.90 | 21.66 | 7.82 | 33.13 | 23. Yuexi | 28.65 | 102.52 | 1659.50 | 14.43 | 10.59 | 31.87 | ||
11. Lingshan | 22.42 | 109.30 | 66.60 | 22.46 | 7.67 | 33.40 | 24. Zhaojue | 28.00 | 102.85 | 2132.40 | 12.37 | 10.44 | 31.98 | ||
12. Liuzhou | 24.35 | 109.40 | 96.80 | 21.50 | 7.43 | 32.95 | 25. Baoshan | 25.12 | 99.18 | 1652.20 | 16.79 | 11.40 | 32.74 | ||
13. Longzhou | 22.33 | 106.85 | 128.80 | 23.21 | 8.33 | 33.41 | 26. Chuxiong | 25.03 | 101.55 | 1824.10 | 16.77 | 11.35 | 32.75 | ||
14. Mengshan | 24.20 | 110.52 | 145.70 | 20.71 | 7.94 | 32.97 | 27. Dali | 25.70 | 100.18 | 1990.50 | 15.71 | 10.95 | 32.65 | ||
15. Nanning | 22.63 | 108.22 | 121.60 | 22.48 | 7.83 | 33.37 | 28. Deqin | 28.48 | 98.92 | 3319.00 | 6.75 | 9.96 | 31.90 | ||
16. Pingguo | 23.32 | 107.58 | 108.80 | 22.64 | 8.06 | 33.19 | 29. Gongshan | 27.75 | 98.67 | 1583.30 | 15.93 | 10.77 | 32.13 | ||
17. Qinzhou | 21.95 | 108.62 | 4.50 | 23.01 | 6.75 | 33.55 | 30. Huize | 26.42 | 103.28 | 2110.50 | 13.76 | 10.59 | 32.44 | ||
18. Weizhoudao | 21.03 | 109.10 | 55.20 | 23.63 | 5.08 | 33.67 | 31. Jinghong | 22.00 | 100.78 | 582.00 | 23.86 | 11.76 | 33.46 | ||
19. Wuzhou | 23.48 | 111.30 | 114.80 | 22.03 | 8.74 | 33.17 | 32. Kunming | 25.00 | 102.65 | 1886.50 | 15.87 | 10.46 | 32.76 | ||
20. Yulin | 22.65 | 110.17 | 81.80 | 22.77 | 7.72 | 33.37 | 33. Lancang | 22.57 | 99.93 | 1054.80 | 21.05 | 12.78 | 33.38 | ||
SB | 1. Bazhong | 31.87 | 106.77 | 417.70 | 19.05 | 6.55 | 31.60 | 34. Lijiang | 26.87 | 100.22 | 2392.40 | 13.71 | 11.48 | 32.37 | |
2. Dujiangyan | 31.00 | 103.67 | 698.50 | 17.27 | 7.41 | 31.30 | 35. Lincang | 23.88 | 100.08 | 1502.40 | 18.65 | 11.37 | 33.11 | ||
3. Langzhong | 31.58 | 105.97 | 382.60 | 17.46 | 7.31 | 31.12 | 36. Luxi | 24.53 | 103.77 | 1704.30 | 16.22 | 10.93 | 32.92 | ||
4. Leshan | 29.57 | 103.75 | 424.20 | 18.66 | 6.53 | 31.85 | 37. Mengzi | 23.38 | 103.38 | 1300.70 | 19.86 | 9.67 | 33.18 | ||
5. Mianyang | 31.45 | 104.73 | 522.70 | 17.08 | 6.68 | 31.54 | 38. Mengla | 21.48 | 101.57 | 631.90 | 23.33 | 11.29 | 33.61 | ||
6. Naxi | 28.78 | 105.38 | 368.80 | 18.76 | 7.08 | 31.95 | 39. Pingbian | 22.98 | 103.68 | 1414.10 | 19.86 | 9.67 | 33.33 | ||
7. Nanchong | 30.78 | 106.10 | 309.70 | 16.57 | 7.36 | 31.30 | 40. Ruili | 24.02 | 97.85 | 776.60 | 21.84 | 11.54 | 33.00 | ||
8. Suining | 30.50 | 105.55 | 355.00 | 15.61 | 9.23 | 30.81 | 41. Simao | 22.78 | 100.97 | 1302.10 | 19.70 | 10.75 | 33.35 | ||
9. Wanyuan | 32.07 | 108.03 | 674.00 | 17.97 | 7.17 | 31.33 | 42. Tengchong | 25.02 | 98.50 | 1654.60 | 16.13 | 10.95 | 32.76 | ||
10. Wenjiang | 30.70 | 103.83 | 539.30 | 18.05 | 6.70 | 31.28 | 43. Weixi | 27.17 | 99.28 | 2326.10 | 12.86 | 12.06 | 32.22 | ||
11. Xuyong | 28.17 | 105.43 | 377.50 | 18.15 | 6.31 | 31.85 | 44. Yanshan | 23.62 | 104.33 | 1561.10 | 17.26 | 9.67 | 33.15 | ||
12. Yaan | 29.98 | 103.00 | 627.60 | 17.14 | 7.70 | 31.05 | 45. Yuxi | 24.33 | 102.55 | 1716.90 | 17.10 | 11.43 | 32.95 | ||
13. Yibin | 28.80 | 104.60 | 340.80 | 17.97 | 6.72 | 31.61 | 46. Yuanjiang | 23.60 | 101.98 | 400.90 | 25.06 | 11.32 | 33.15 | ||
14. Fengjie | 31.02 | 109.53 | 299.80 | 17.64 | 7.41 | 31.02 | 47. Zhanyi | 25.58 | 103.83 | 1898.70 | 15.60 | 10.64 | 32.67 | ||
15. Liangping | 30.68 | 107.80 | 454.50 | 15.94 | 6.62 | 31.13 | 48. Zhongdian | 27.83 | 99.70 | 3276.70 | 6.93 | 13.28 | 32.11 | ||
16. Shapingba | 29.58 | 106.47 | 259.10 | 17.63 | 7.91 | 30.97 | 49. Youyang | 28.83 | 108.77 | 664.10 | 15.65 | 7.50 | 31.84 |
Zone | ABC | DE | PSO | ||||||
---|---|---|---|---|---|---|---|---|---|
C × 10−3 | m | a | C × 10−3 | m | a | C × 10−3 | m | a | |
SW | 0.75 | 0.58 | 19.13 | 0.73 | 0.60 | 17.90 | 0.72 | 0.60 | 18.90 |
NSP | 0.53 | 0.60 | 29.14 | 0.49 | 0.59 | 32.13 | 0.58 | 0.56 | 32.91 |
YGP | 0.71 | 0.58 | 20.18 | 0.70 | 0.60 | 17.79 | 0.69 | 0.60 | 18.68 |
GB | 1.06 | 0.55 | 9.69 | 1.00 | 0.56 | 10.68 | 0.99 | 0.56 | 11.86 |
SB | 0.66 | 0.61 | 17.14 | 0.66 | 0.62 | 16.47 | 0.65 | 0.62 | 16.80 |
Sub-Zone | Statistical Indicator | HG | ABC-HG | DE-HG | PSO-HG | P-T | I-A | JH |
---|---|---|---|---|---|---|---|---|
SW | R2 | 0.79 | 0.82 | 0.82 | 0.83 | 0.77 | 0.79 | 0.67 |
RRMSE (mm/d) | 0.48 | 0.25 | 0.25 | 0.24 | 0.78 | 0.48 | 1.91 | |
MAE (mm/d) | 0.90 | 0.55 | 0.57 | 0.52 | 1.52 | 0.91 | 2.92 | |
GPI | −0.16 | 0.13 | 0.04 | 0.14 | −0.54 | −0.24 | −1.04 | |
Rank | 4 | 2 | 3 | 1 | 6 | 5 | 7 | |
NSP | R2 | 0.78 | 0.83 | 0.83 | 0.83 | 0.67 | 0.76 | 0.64 |
RRMSE (mm/d) | 0.59 | 0.27 | 0.30 | 0.25 | 1.76 | 0.67 | 1.98 | |
MAE (mm/d) | 1.11 | 0.55 | 0.58 | 0.51 | 3.19 | 1.39 | 3.22 | |
GPI | −0.47 | −0.22 | −0.25 | −0.03 | −1.07 | −0.52 | −3.17 | |
Rank | 4 | 2 | 3 | 1 | 6 | 5 | 7 | |
SB | R2 | 0.83 | 0.85 | 0.86 | 0.86 | 0.84 | 0.79 | 0.75 |
RRMSE (mm/d) | 0.31 | 0.29 | 0.23 | 0.23 | 0.30 | 0.46 | 0.91 | |
MAE (mm/d) | 0.81 | 0.57 | 0.43 | 0.42 | 0.75 | 0.85 | 1.70 | |
GPI | −0.16 | −0.01 | 0.22 | 0.26 | −0.12 | −0.36 | −0.42 | |
Rank | 5 | 3 | 2 | 1 | 4 | 6 | 7 | |
YGB | R2 | 0.78 | 0.82 | 0.82 | 0.82 | 0.76 | 0.79 | 0.64 |
RRMSE (mm/d) | 0.44 | 0.24 | 0.24 | 0.23 | 1.91 | 0.42 | 2.05 | |
MAE (mm/d) | 0.75 | 0.55 | 0.57 | 0.54 | 2.12 | 0.75 | 3.35 | |
GPI | −0.08 | 0.00 | −0.04 | 0.07 | −0.12 | −0.07 | −0.51 | |
Rank | 5 | 2 | 3 | 1 | 6 | 4 | 7 | |
GB | R2 | 0.77 | 0.79 | 0.79 | 0.80 | 0.69 | 0.77 | 0.72 |
RRMSE (mm/d) | 0.55 | 0.24 | 0.28 | 0.21 | 1.77 | 0.57 | 0.67 | |
MAE (mm/d) | 1.09 | 0.60 | 0.72 | 0.51 | 5.09 | 1.09 | 1.32 | |
GPI | 0.06 | 0.36 | 0.24 | 0.41 | −0.55 | 0.00 | −0.05 | |
Rank | 4 | 2 | 3 | 1 | 7 | 5 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Cui, N.; Zhu, B.; Zhao, L.; Wang, X.; Hu, X.; Wang, Y.; Zhu, S. Improved Hargreaves Model Based on Multiple Intelligent Optimization Algorithms to Estimate Reference Crop Evapotranspiration in Humid Areas of Southwest China. Atmosphere 2021, 12, 15. https://doi.org/10.3390/atmos12010015
Wu Z, Cui N, Zhu B, Zhao L, Wang X, Hu X, Wang Y, Zhu S. Improved Hargreaves Model Based on Multiple Intelligent Optimization Algorithms to Estimate Reference Crop Evapotranspiration in Humid Areas of Southwest China. Atmosphere. 2021; 12(1):15. https://doi.org/10.3390/atmos12010015
Chicago/Turabian StyleWu, Zongjun, Ningbo Cui, Bin Zhu, Long Zhao, Xiukang Wang, Xiaotao Hu, Yaosheng Wang, and Shidan Zhu. 2021. "Improved Hargreaves Model Based on Multiple Intelligent Optimization Algorithms to Estimate Reference Crop Evapotranspiration in Humid Areas of Southwest China" Atmosphere 12, no. 1: 15. https://doi.org/10.3390/atmos12010015
APA StyleWu, Z., Cui, N., Zhu, B., Zhao, L., Wang, X., Hu, X., Wang, Y., & Zhu, S. (2021). Improved Hargreaves Model Based on Multiple Intelligent Optimization Algorithms to Estimate Reference Crop Evapotranspiration in Humid Areas of Southwest China. Atmosphere, 12(1), 15. https://doi.org/10.3390/atmos12010015