Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Characteristics of Study Area
2.2. Data Sources
2.3. Statistical Analysis
3. Results and Discussions
3.1. Occurrence of Dust Storm in Dusty Season
3.2. Patterns of HYSPLIT Trajectories of Air Masses Arriving at the Study Area in Dusty Season
- (1)
- Cluster 1a: E-E category
- (2)
- Cluster2a: SE-S category
- (3)
- Cluster 3a: S-N category
- (4)
- Cluster 4a: S-S category
- (5)
- Cluster 5a: SW-W category
3.3. Patterns of Air Mass HYSPLIT Trajectories in Non-Dusty Season
- (1)
- Cluster 1b: NW-N category
- (2)
- Cluster 2b: SW-W category
3.4. Comparison of Air Mass Trajectories between Dusty and Non-Dusty Season
- (1)
- Origins and pathways of trajectories
- (2)
- Moisture condition
- (3)
- Wind speed
3.5. Air Pollutants Concentration Associated with Different Clusters in Dusty and Non-Dusty Seasons
3.6. Distant and Regional Sources of Air Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.K.; Levy, J.K.; Lin, Z.H.; Chen, H. An investigation of sand–dust storm events and land surface characteristics in China using NOAA NDVI data. Glob. Planet. Chang. 2006, 52, 182–196. [Google Scholar] [CrossRef]
- Stohl, A. Trajectory statistics-A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579–587. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, C.H. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Kimoanh, N.; Chutimon, P.; Ekbordin, W.; Supat, W.; Oanh, N.T.K. Meteorological pattern classification and application for forecasting air pollution episode potential in a mountain-valley area. Atmos. Environ. 2005, 39, 1211–1225. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, M.; Pachauri, R.; Babu, K.D. Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Sol. Energy 2019, 191, 596–622. [Google Scholar] [CrossRef]
- Plaisance, H.; Galloo, J.C.; Guillermo, R. Source identification and variation in the chemical composition of precipitation at two rural sites in France. Sci. Total Environ. 1997, 1, 79–93. [Google Scholar] [CrossRef]
- Man, C.; Shih, M. Identification of sources of PM10 aerosols in Hong Kong by wind trajectory analysis. J. Aerosol Sci. 2001, 32, 1213–1223. [Google Scholar] [CrossRef]
- Flores, R.M.; Kaya, N.; Eşer, Ö.; Saltan, Ş. The effect of mineral dust transport on PM10 concentrations and physical properties in Istanbul during 2007–2014. Atmos. Res. 2017, 197, 342–355. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. Description of the HYSPLIT4 Modeling System. NOAA Technical Memorandum, ERLARL-224. 1997. Available online: http://www.arl.noaa.gov/data/web/models/hysplit4/win95/arl-224.pdf (accessed on 24 December 1997).
- Draxler, R.R.; Gillette, D.A.; Kirkpatrick, J.S.; Heller, J. Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmos. Environ. 2001, 35, 4315–4330. [Google Scholar] [CrossRef]
- Hesam, S.; Mohsen, S. Determination of the transport routes of and the areas potentially affected by SO2 emanating from Khatoonabad Copper Smelter (KCS), Kerman province, Iran using HYSPLIT. Atmos. Pollut. Res. 2019, 10, 321–333. [Google Scholar]
- Karaca, F.; Anil, I.; Alagha, O. Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity. Atmos. Environ. 2009, 43, 5713–5722. [Google Scholar] [CrossRef]
- Natsagdorj, L.; Jugder, D.; Chung, Y. Analysis of dust storms observed in Mongolia during 1937–1999. Atmos. Environ. 2003, 37, 1401–1411. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z.-Y.; Zhang, X.; Yang, X. Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J. Geophys. Res. Space Phys. 2004, 109, 16. [Google Scholar] [CrossRef]
- Kahar, Y.; Long, Y.L.; Aili, A. Interannual variations of sand-dust storm and it’s reasons in Bugur County over the past 20 years. Arid. Land Geo. Uyghur Version 2010, 3, 251–257. [Google Scholar]
- Shi, Y.L.; Wang, R.S.; Fan, L.Y.; Li, J.S.; Ye, D.F. Analysis of Land use—Change and its demographic factors in the Original-stream watershold of Tarim river based on GIS and stststics. Procedia Environ. Sci. 2010, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Quan, L.; Shi, S.; Zhu, Y.; Qian, W. Temporal–spatial distribution characteristics and causes of dust-day in China. Acta Geogr. Sin. 2001, 56, 477–485. (In Chinese) [Google Scholar]
- Zhang, B.L.; Atsushi, T.; Mitsuru, T. Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006. Glob. Planet Chang. 2008, 60, 487–504. [Google Scholar] [CrossRef]
- Administration of Quality Supervision, Inspection and Quarantine (AQSIQ); National Standards Committee (NSC) of People’s Republic of China. Dust Storm Weather Classification Criterion; Standard code: GBT 20480-2006; China Standard Press: Beijing, China, 2006; p. 7. [Google Scholar]
- Aili, A. Assessment of the Impact of Sand-Dust Storm on Oasis Agriculture in Arid Area: A Case Study of Bugur County, Northwest China. Master’s Thesis, Asian Institute of Technology, Pathum Thani, Thailand, 2010. [Google Scholar]
- Lai, X.Q.; Qin, L.; Zhang, F.H. The eco-agricultural construction of oases and its sustainable development in Xinjiang. Chin. J. Eco-Agric. 2002, 10, 129–130. (In Chinese) [Google Scholar]
- Chen, Y.N.; Xu, C.C.; Hao, X.M.; Li, W.H.; Chen, Y.P.; Zhu, C.G.; Ye, Z.X. Fifty year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 2009, 29, 1–9. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, X.L. Structural Adjustment of Oasis Agriculture in Xinjiang. Chin. J. Popul. Resour. Environ. 2005, 3, 39–45. (In Chinese) [Google Scholar]
- Begum, B.A.; Kim, E.; Jeong, C.-H.; Lee, D.-W.; Hopke, P.K. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos. Environ. 2005, 39, 3719–3724. [Google Scholar] [CrossRef]
- Fan, A.; Hopke, P.K.; Raunemaa, T.M.; Öblad, M.; Pacyna, J.M. A study on the potential sources of air pollutants observed at Tjörn, Sweden. Environ. Sci. Pollut. Res. 1995, 2, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Katsoulis, B.D. The potential for long-range transport of air-pollutants into Greece: A climatological analysis. Sci. Total Environ. 1999, 231, 101–113. [Google Scholar] [CrossRef]
- Poissant, L. Potential sources of atmospheric total gaseous mercury in the St. Lawrence River valley. Atmos. Environ. 1999, 33, 2537–2547. [Google Scholar] [CrossRef]
- Pongkiatkul, P.; Oanh, N.T.K. Assessment of potential long-range transport of particulate air pollution using trajectory modeling and monitoring data. Atmos. Res. 2007, 85, 3–17. [Google Scholar] [CrossRef]
- Zeng, Y.; Hopke, P.K. A study on the sources of acid precipitation in Ontario, Canada. Atmos. Environ. 1989, 23, 1499–1509. [Google Scholar] [CrossRef]
- Pan, H.; Huo, W.; Wang, M.; Zhang, J.; Meng, L.; Kumar, K.R.; Devi, N.L. Insight into the climatology of different sand-dust aerosol types over the Taklimakan Desert based on the observations from radiosonde and A-train satellites. Atmos. Environ. 2020, 238, 117705. [Google Scholar] [CrossRef]
- Shao, Y.; Leslie, L.M. Wind erosion prediction over the Australian continent. J. Geophys. Res. Space Phys. 1997, 102, 30091–30105. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Yang, W.; Wang, X.H.; Yin, B.H.; Zhang, X.; Wang, J.; Gu, C.; Ming, J.; Geng, C.M.; Bai, Z.P. A seriously sand storm mixed air-polluted area in the margin of Tarim Basin: Temporal-spatial distribution and potential sources. Sci. Total Environ. 2019, 676, 436–446. [Google Scholar] [CrossRef]
Parameters | Cluster 1a | Cluster 2a | Cluster 3a | Cluster 4a | Cluster 5a | Unclassified | |
---|---|---|---|---|---|---|---|
Total number of days | 432 | 127 | 242 | 521 | 282 | 226 | |
Dust storm frequency | Number of dusty days | 136 | 47 | 43 | 143 | 58 | 72 |
Percentage of dusty days (%) | 31.5% | 37% | 17.8% | 27.4% | 20.6% | 31.5% | |
Suspended dust | 86 | 26 | 30 | 106 | 53 | 37 | |
March | 28 (32.5%) | 8 (30.1%) | 9 (30%) | 27 (25.5%) | 17 (32.1%) | 11 (29.7%) | |
April | 34 (39.5%) | 14 (53.8%) | 14 (46.7%) | 33 (31.1%) | 27 (50.1%) | 19 (51.3%) | |
May | 15 (17.4%) | 3 (11.5%) | 5 (16.6%) | 28 (26.4%) | 6 (11.35) | 5 (14.3%) | |
June | 9 (10.4%) | 1 (3.8%0 | 3 (10%) | 16 (15.1%) | 35.7%) | 2 (5.4%) | |
Blowing dust | 38 | 15 | 10 | 31 | 13 | 33 | |
March | 13 (34.2%) | 5 (33.3%) | 3 (30%) | 7 (22.6%) | 4 (30.75) | 9 (27.3%) | |
April | 15 (39.4%) | 8 (53.3%) | 5 (50%) | 11 (35. %) | 5 (38.5%) | 20 (60.6%) | |
May | 7 (18.4%) | 2 (13.3%) | 1 (10%) | 9 (29%) | 3 (23.1%) | 4 (12.1%) | |
June | 3 (7.9%) | 0 | 1 (10%) | 4 (12.9%) | 1 (7.7%) | 0 | |
Sand storm | 12 | 6 | 3 | 6 | 3 | 2 | |
March | 3 (25%) | 2 (33.3%) | 1 (33.3%) | 1 (16.7%) | 1 (33.3%) | 0 | |
April | 7 (46.7%) | 4 (66.7%) | 2 (67.7%) | 2 (33.3%) | 2 (66.7%) | 2 (100%) | |
May | 2 (16.7%) | 0 | 0 | 2 (33.3%) | 0 | 0 | |
June | 0 | 0 | 0 | 1 (16.7%) | 0 | 0 | |
Non-dusty days | 296(68.5%) | 80(63%) | 199(82%) | 378(72.6%) | 224 (79%) | 154(69%) | |
Meteorological condition | Potential temperature (K) | 305 ± 22.4 | 298 ± 23.3 | 295 ± 31.1 | 308 ± 19.6 | 307 ± 20.1 | 291 ± 17.8 |
Ambient temperature (K) | 283 ± 20.1 | 278 ± 16.2 | 267 ± 14.3 | 290 ± 24.8 | 281 ± 24.2 | 278 ± 17.5 | |
Rainfall (mm/day) | 0 | 0 | 0.48 | 0 | 0.24 | 0.24 | |
Mixing layer depth (m) | 1254 ± 221 | 1224 ± 103 | 1090 ± 95 | 2121 ± 286 | 1688 ± 148 | 1312 ± 87 | |
Relative humidity (%) | 23 ± 6.3 | 24 ± 4.8 | 43 ± 7.7 | 31 ± 7.5 | 23 ± 5.6 | 26 ± 6.8 | |
Downward solar radiation flux (W/m2) | 1216 ± 67 | 1526 ± 122 | 743 ± 57 | 713 ± 86 | 664 ± 49 | 1683 ± 146 | |
Wind speed m/s) | 8.6 ± 1.2 | 7.9 ± 0.6 | 5.8 ± 0.6 | 5.4 ± 0.7 | 6.4 ± 1.1 | 7.3 ± 0.9 |
Parameters | Cluster 1b | Cluster 2b | Unclassified |
---|---|---|---|
Total number of days | 243 | 135 | 87 |
Potential temperature (K) | 304 ± 31.4 | 344 ± 33.6 | 291 ± 24.5 |
Ambient temperature (K) | 283 ± 22.6 | 311 ± 28.8 | 278 ± 23.0 |
Rainfall (mm/day) | 1.92 ± 0.2 | 0.87 ± 0.1 | 0.47 ± 0.1 |
Mixing layer depth (m) | 1054 ± 86.1 | 2688 ± 179.3 | 812 ± 66.5 |
Relative humidity (%) | 48 ± 3.6 | 30 ± 2.4 | 34 ± 2.8 |
Downward solar radiation flux (W/m2) | 629 ± 51.2 | 664 ± 52.6 | 683 ± 60.4 |
Wind speed (m/s) | 4.4 ± 0.5 | 5.3 ± 0.6 | 4.6 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aili, A.; Xu, H.; Kasim, T.; Abulikemu, A. Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China. Atmosphere 2021, 12, 113. https://doi.org/10.3390/atmos12010113
Aili A, Xu H, Kasim T, Abulikemu A. Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China. Atmosphere. 2021; 12(1):113. https://doi.org/10.3390/atmos12010113
Chicago/Turabian StyleAili, Aishajiang, Hailiang Xu, Tursun Kasim, and Abudumijiti Abulikemu. 2021. "Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China" Atmosphere 12, no. 1: 113. https://doi.org/10.3390/atmos12010113
APA StyleAili, A., Xu, H., Kasim, T., & Abulikemu, A. (2021). Origin and Transport Pathway of Dust Storm and Its Contribution to Particulate Air Pollution in Northeast Edge of Taklimakan Desert, China. Atmosphere, 12(1), 113. https://doi.org/10.3390/atmos12010113