Features Exploration from Datasets Vision in Air Quality Prediction Domain
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Work | Year | Case Study | Prediction Target | Dataset Type | Data Rate | Period (Days) | Open Data | Algorithm | Time Granularity | Evaluation Metric |
---|---|---|---|---|---|---|---|---|---|---|
[36] | 2020 | USA | PM2.5 | Spatial, Temporal, AOD, PBL Height | Daily | 5779 | No | Hybrid | 24 h | RMSE, SD, R2 |
[50] | 2020 | Canada | UFP | MET, Traffic, Land Use, BEV | N/S | 120 | No | Ensemble | RMSE, R2 | |
[51] | 2020 | Taiwan | PM2.5, PM10 | MET | N/S | 2192 | No | Hybrid | 8 h | RMSE, MAE |
[39] | 2020 | China | PM2.5, NOx | MET, Traffic | Hourly | 731 | No | Regression, Ensemble | 1 h | RMSE, ME, NRMSE, NME, POD, POF, R2 |
[21] | 2020 | USA | PM2.5 | MET, Temporal | Hourly | 730 | No | NN | RMSE, MAE, MAPE | |
[42] | 2020 | India | PM2.5 | MET | Hourly | 1230 | No | NN | RMSE, R2 | |
[52] | 2020 | USA | AQI | MET | Hourly | 851 | Yes | Regression | 1 h | RMSE, MAE, NRMSE, R |
[53] | 2020 | Turkey | PM10 | Spatial, Land Use | N/S | 3652 | No | Regression, Ensemble, NN | RMSE, MAE, R2 | |
[54] | 2020 | China | PM2.5 | MET | Hourly | 31 | Yes | NN | 1 h | RMSE, R |
[55] | 2020 | China | AQHI, IAQL | MET, Temporal | Hourly | 730/1826 | Yes | Ensemble | 12 h | Acc, MSE, WP, WR, WF |
[56] | 2020 | China | PM10 | MET | Daily | 1096 | No | NN | 24 h | RMSE, ME, R, EOp |
[37] | 2020 | Tunisia, Italy | MET, Temporal | Hourly | 1461/366 | No | Ensemble | 1 week | aRRMSE, aRMSE, R2, aCC, MSE, aRE, RP | |
[38] | 2020 | China | PM2.5 | MET | N/S | 46 | Yes | Ensemble | 24 h | RMSE, MAE, SMAPE |
[41] | 2020 | China | PM2.5 | MET | Hourly | 1825 | No | NN | 1 week | RMSE |
[57] | 2020 | China | PM2.5 | MET | N/S | 1096 | Yes | NN | 24 h | RMSE, MAE, MAPE |
[46] | 2020 | China | O3 | MET, UV Index | Daily | 1491 | Yes | Hybrid | 1 week | RMSE, MAE, MAPE, IA |
[58] | 2020 | South Korea | PM2.5, PM10 | MET | Hourly | 1461 | Yes | Hybrid | 15days | RMSE, MAE |
[40] | 2020 | China | PM2.5, PM10, NO2, NO, CO | MET | Daily | 4656 | No | NN | 24 h | MSE |
[59] | 2020 | Taiwan | PM2.5 | MET, Spatial, Temporal | Hourly | 365 | Yes | Ensemble | 24 h | RMSE, NRMSE, R2 |
[60] | 2020 | UK | PM2.5 | MET, Spatial, Temporal, AOD, Land Use | Daily | 3287 | Partially | Ensemble | 24 h | RMSE, MSE, R2 |
[61] | 2020 | Ecuador | PM2.5 | MET, Spatial, Temporal, Traffic | 5 s | 4 | No | Other Algorithms | Acc | |
[62] | 2020 | China | PM2.5 | MET | Hourly | 365 | No | Ensemble | 48 h | MSE, IA, NMGE, R2 |
[63] | 2020 | China | PM2.5 | MET | Hourly | 1461 | No | Ensemble | 24 h | RMSE, MB, ME, R |
[64] | 2020 | China | AQI | MET | Hourly | 2192 | No | NN | 48 h | RMSE, Acc |
[32] | 2020 | China | AQI | MET | Hourly | 730 | Yes | NN | 24 h | RMSE, MAE, R2, FB |
[65] | 2020 | South Korea | PM2.5, PM10 | MET, Temporal, Spatial | Minutely | 7 | No | Hybrid | RMSE | |
[66] | 2020 | China | PM2.5, PM10, O3, NO2, SO2, CO | MET, Social Media | Daily | 731 | Yes | NN | 24 h | RMSE, MAE |
[67] | 2020 | Thailand | PM10 | MET | Secondly | 59 | No | NN | 1 h | RMSE, MAE, MAPE, R |
[68] | 2020 | China | AQI | Spatial | Daily | 1086 | Yes | Hybrid | 5 days | RMSE, MAE, MAPE, R |
[31] | 2020 | Germany | CO2, NH3, NO, NO2, NOx, O3, PM1, PM2.5, PM10, PN10 | MET, Temporal, Traffic, SP | Hourly | 62 | No | NN | 1 h | RMSE, R, NMB, NMSD, RS, SD, SD |
[43] | 2020 | Mongolia | PM2.5 | MET, Temporal, Land Use, PD | Hourly | 2922 | No | Regression, Ensemble | 24 h | RMSE, R2 |
[44] | 2020 | Taiwan | PM2.5 | MET, Temporal, Spatial | Hourly | 2192 | No | NN | 8 h | RMSE, MAE, MAPE |
[69] | 2020 | Turkey | PM10 | MET | Daily | 766 | No | Regression, NN | RMSE, MAE, R2 | |
[70] | 2020 | Jordan | O3 | MET, Temporal | Daily | 1496 | No | NN, Regression, Ensemble | 24 h | RMSE, MAE, R2 |
[71] | 2019 | South Korea | PM10, PM2.5 | MET, Spatial, Human Movements | Hourly | 115 | No | NN, Regression | 1 h | RMSE, R2 |
[72] | 2019 | China/Taiwan | PM2.5 | MET | Hourly | 3693 | No | NN, Other Algorithms | 5 days | RMSE |
[73] | 2019 | South Korea | O3 | MET | Hourly | 1096 | No | Ensemble | 24 h | IA |
[74] | 2019 | USA | NO2, NOx | MET, Spatial, Traffic | biweekly | 8023 | No | Ensemble | RMSE, R2, RMSEIQR | |
[6] | 2019 | Europe | NO2, PM2.5 | AOD, Traffic, Land Use, Altitude | N/S | 365 | Yes | Regression, Ensemble, NN | RMSE, R2, MSE-R2 | |
[75] | 2019 | China | PM2.5 | MET, AOD | Hourly | 1096 | Yes | Hybrid | 24 h | RMSE, R2 |
[76] | 2019 | China | SO2 | MET, Temporal, Land Use, OMI-SO2, PPS, TS | Daily | 365 | Partially | Hybrid | 24 h | RMSE, R2, RPE |
[77] | 2019 | China | PM2.5 | MET | Hourly | 731 | No | NN | 3 h | RMSE |
[78] | 2019 | China | PM2.5 | MET, WFD, Spatial | N/S | 61 | No | Ensemble | 24 h | MAE, SMAPE, MSE |
[79] | 2019 | China | PM2.5 | MET | Hourly | 1826 | Yes | NN | 2 h | RMSE, MAE, SMAPE |
[80] | 2019 | China | PM2.5 | MET | N/S | 2191 | Yes | Ensemble | 1 week | RMSE, MAE |
[81] | 2019 | Italy | CO(GT), NO2(GT) | MET | Hourly | 183 | Yes | NN | 1 h | RMSE, MAE, MAPE |
[82] | 2019 | China | PM2.5 | Spatial | Hourly | 365 | No | NN | 1 week | RMSE, MAE, MAPE |
[7] | 2019 | China | AQI | MET, WFD, Traffic, POI Distribution, FAPE, RND | Hourly | 366 | Yes | NN | 48 h | MAE, MAP |
[83] | 2019 | Taiwan | PM2.5 | MET | Hourly | 2557 | No | Hybrid | 4 h | RMSE, Gbench |
[84] | 2019 | Iran | PM2.5 | MET | Hourly | 1826 | No | Ensemble, NN, Hybrid | 48 h | RMSE, MAE, R2 |
[85] | 2019 | Poland | NO2 | MET, Temporal, Traffic | Hourly | 731 | No | Ensemble | MAPE, MADE, BIC, R2 | |
[86] | 2019 | India | O3, PM2.5, NOx, CO | MET, Traffic | Hourly | 730 | No | NN | RMSE, NSE, PBIAS, R | |
[87] | 2019 | China | PM2.5 | MET | Hourly | 1826 | No | NN | 72 h | RMSE, IA, MAE, R |
[47] | 2019 | China | PM2.5 | MET | Hourly | 366 | No | NN | 10 h | RMSE, NRMSE, MAE, SMAPE, R |
[88] | 2019 | China | PM2.5 | MET, AOD | N/S | 730 | Yes | NN | RMSE, MAE, MSE, R2 | |
[89] | 2019 | Iran | PM2.5 | MET, Temporal, Spatial, AOD, Altitude | Daily | 1460 | Yes | Ensemble, NN | RMSE, MAE, R2 | |
[90] | 2019 | India | O3 | MET | Hourly | 92 | No | Ensemble | IoAd, R2, PEP | |
[91] | 2019 | China | O3 | MET | Hourly | 365 | No | Ensemble, NN | RMSE, R, NMB, NME, MFB, MFE | |
[92] | 2019 | UK | SO2 | MET | Hourly | 120 | Yes | Ensemble | RMSE, MAE, R2, RAE | |
[93] | 2019 | Taiwan | AQI | MET, Temporal | Hourly | 851 | No | Regression, NN | 6 h | RMSE, MAE, R2 |
[94] | 2019 | Iran | PM10, PM2.5 | MET, Temporal, Spatial | Daily | 3652 | Yes | Regression, NN | 1 week | RMSE, R2 |
[95] | 2018 | China | PM2.5 | MET, Temporal, AOD | Hourly | 731 | Partially | NN | 72 h | RMSE, MAE, MSE, IA, TPR, FPR, SI |
[96] | 2018 | Slovenia | PM10, O3 | MET, Temporal | Hourly | 1461 | No | Other Algorithms | 24 h | MAE, RPS |
[8] | 2018 | China | O3 | MET, Land Use, Elevation, AEI, NDVI, RND, PD | Hourly | 365 | Yes | Ensemble | RMSE, R2, RPE | |
[9] | 2018 | China | PM2.5 | MET, AOD, Elevation, PD, RND, NDVI | Daily | 1095 | Yes | Ensemble | 1 month | RMSE, R2, RPE |
[97] | 2018 | China | PM2.5 | MET, Spatial | Hourly | 61 | No | Regression | 24 h | total accuracy index (pt), a total absolute error index (et) |
[98] | 2018 | UK | AQI | MET | Hourly | 605 | Yes | NN | RMSE, MAPE, band Acc | |
[99] | 2018 | Kuwait | O3 | MET | Hourly | 669 | No | NN | 72 h | RMSE, MAE |
[100] | 2018 | Spain | O3 | MET | Hourly | 730 | Yes | Ensemble | 24 h | RMSE, MAE, R2 |
[101] | 2018 | Egypt | PM10 | MET, Temporal | Hourly | 276 | No | Regression | 1 h | RMSE, R, t-Value |
[102] | 2018 | China | PM2.5 | MET | Hourly | 1826 | No | NN | 1 h | RMSE, MAE, IA, R |
[103] | 2018 | USA | O3, PM2.5, SO2 | MET | Hourly | 3652 | Yes | Other Algorithms | 24 h | RMSE |
[104] | 2017 | USA | BC | MET, Spatial, Temporal | Daily | 4383 | Yes | Regression | 24 h | R2 |
[22] | 2017 | Canada | O3, PM2.5, NO2 | MET, Temporal | Hourly | 1826 | No | NN | 48 h | MAE, R, ME, SS |
[105] | 2017 | China | PM2.5 | MET, Social Media | Hourly | 365 | No | NN | 24 h | RMSE |
[106] | 2017 | Ecuador | PM2.5 | MET | Daily | 1827 | No | Ensemble, Regression, NN | MSE, MAPE | |
[107] | 2017 | China | PM2.5 | MET, Temporal, Spatial, AOD | Daily | 365 | Yes | Ensemble | RMSE, R2 | |
[108] | 2017 | Kuwait | PNCs | MET | 5min | 30 | No | NN | RMSE, NRMSE, IA, R2 | |
[109] | 2017 | Egypt | PM10 | MET, Temporal | Hourly | 368 | No | Regression | 1 h | RMSE, R, z’, t-value |
[110] | 2017 | China | NO2, NOx, O3, PM2.5, SO2 | MET, Temporal | Daily | 2191 | No | NN | 24 h | RMSE, MAE, IA, R2 |
[111] | 2017 | China | AQI | MET | Daily | 851 | No | Regression | RMSE, MAE, MAPE, MSE | |
[112] | 2016 | Qatar | O3, NO2, SO2 | MET, Temporal | 15min | 92 | No | Regression | 24 h | RMSE, NRMSE, PTA |
[113] | 2016 | France | O3, NO2, PM10 | MET | Hourly | 1733 | No | Hybrid | 24 h | RMSE, MAE, NRMSE, MBE, IA, R |
[114] | 2014 | Saudi Arabia | PM10 | MET | Hourly | 366 | No | Regression | 1 h | RMSE, MAE, MBE, FACT2, R, IA |
[115] | 2014 | France | O3, NO2, PM10 | MET | Hourly | 731 | Yes | Ensemble | 72 h | RMSE |
[16] | 2013 | China | PM1.0, UFP | MET, Traffic, Temporal | Minutely | 3 | No | Regression, Ensemble, NN | AUC, R, R2, Precision, Recall, f measure, weighted f-measure | |
[116] | 2013 | Greece | O3 | MET | Hourly | 7305 | No | NN | 6 h | RMSE, R2, R |
[117] | 2013 | India | AQI | MET | Daily | 1825 | Partially | Ensemble | RMSE, MAE, R | |
[118] | 2012 | China | SPM, SO2, NO2, O3 | MET | Daily | 1095 | Yes | Regression | 24 h | RMSE, MAE, CWIA, RE |
[119] | 2012 | Iran | CO | MET | Hourly | 1492 | No | Hybrid | 24 h | RMSE, RME, MARE, R2 |
[120] | 2012 | Saudi Arabia | O3 | MET, Temporal | Minutely | 183 | No | NN, Ensemble | 1 h | MAE, MAPE, SD, MD, R |
[121] | 2009 | Europe | O3 | MET, Land Data, Chemical, Emission | Hourly | 120 | No | Ensemble | 24 h | RMSE |
[122] | 2008 | China | RSP(PM10), NOx, SO2 | MET | Hourly | 61 | No | Regression | 1 week | RMSE, MAE, WIA |
References
- World Urbanization Prospects. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 5 March 2020).
- Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1/ (accessed on 13 March 2020).
- Ambient Air Pollution: Pollutants. Available online: https://www.who.int/airpollution/ambient/pollutants/en/ (accessed on 28 November 2020).
- Air Quality Assessment and Forecast System: Near-Term Opportunity Plan. Available online: https://www.earthobservations.org/documents/committees/uic/200704_4thUIC/Air_Quality_NTO_2006-0925.pdf (accessed on 27 April 2020).
- Ramos, F.; Trilles, S.; Muñoz, A.; Huerta, J. Promoting pollution-free routes in smart cities using air quality sensor networks. Sensors 2018, 18, 2507. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 104934. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ding, Y.; Lyu, D.; Liu, X.; Long, H. Deep multi-task learning based urban air quality index modelling. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–17. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.; Deng, X.; Grieneisen, M.L.; Zhang, M.; Di, B. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ. Pollut. 2018, 233, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xiao, Q.; Meng, X.; Geng, G.; Wang, Y.; Lyapustin, A.; Gu, D.; Liu, Y. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Environ. Pollut. 2018, 242, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Degbelo, A.; Granell, C.; Trilles, S.; Bhattacharya, D.; Wissing, J. Tell me how my open Data are re-used: Increasing transparency through the Open City Toolkit. In Open Cities | Open Data; Springer: Singapore, 2020; pp. 311–330. [Google Scholar]
- Benitez-Paez, F.; Comber, A.; Trilles, S.; Huerta, J. Creating a conceptual framework to improve the re-usability of open geographic data in cities. Trans. GIS 2018, 22, 806–822. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Degbelo, A.; Granell, C.; Trilles, S.; Bhattacharya, D.; Casteleyn, S.; Kray, C. Opening up smart cities: Citizen-centric challenges and opportunities from GIScience. ISPRS Int. J. Geo-Inf. 2016, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Particle Numbers and Concentrations Network. Available online: https://uk-air.defra.gov.uk/networks/network-info?view=particle#:~:text=Particle%20number%20concentration%20is%20the,typically%20dominated%20by%20larger%20particles (accessed on 21 January 2021).
- Vallero, D.A. Fundamentals of Air Pollution; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Pandey, G.; Zhang, B.; Jian, L. Predicting submicron air pollution indicators: A machine learning approach. Environ. Sci. Process. Impacts 2013, 15, 996–1005. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Gandi, S.; Keller, S.; Kreutziger, P.; Mamakos, A. Assessment of 10-nm Particle Number (PN) Portable Emissions Measurement Systems (PEMS) for Future Regulations. Int. J. Environ. Res. Public Health 2020, 17, 3878. [Google Scholar] [CrossRef]
- Attard, J.; Orlandi, F.; Scerri, S.; Auer, S. A systematic review of open government data initiatives. Gov. Inf. Q. 2015, 32, 399–418. [Google Scholar] [CrossRef]
- Máchová, R.; Lnenicka, M. Evaluating the quality of open data portals on the national level. J. Theor. Appl. Electron. Commer. Res. 2017, 12, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Gan, V.J.; Xu, Z. A Lag-FLSTM deep learning network based on Bayesian Optimization for multi-sequential-variant PM2.5 prediction. Sustain. Cities Soc. 2020, 60, 102237. [Google Scholar] [CrossRef]
- Peng, H.; Lima, A.R.; Teakles, A.; Jin, J.; Cannon, A.J.; Hsieh, W.W. Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual. Atmos. Health 2017, 10, 195–211. [Google Scholar] [CrossRef]
- Botchkarev, A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv 2018, arXiv:1809.03006. [Google Scholar]
- Hossin, M.; Sulaiman, M. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. 2015, 5, 1. [Google Scholar]
- Ivy, D.; Mulholland, J.A.; Russell, A.G. Development of ambient air quality population-weighted metrics for use in time-series health studies. J. Air Waste Manag. Assoc. 2008, 58, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Nearing, G.S.; Peters-Lidard, C.D.; Harrison, K.W.; Tang, L. Performance metrics, error modeling, and uncertainty quantification. Mon. Weather Rev. 2016, 144, 607–613. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Yu, S.; Eder, B.; Dennis, R.; Chu, S.H.; Schwartz, S.E. New unbiased symmetric metrics for evaluation of air quality models. Atmos. Sci. Lett. 2006, 7, 26–34. [Google Scholar] [CrossRef]
- Willmott, C.J.; Wicks, D.E. An empirical method for the spatial interpolation of monthly precipitation within California. Phys. Geogr. 1980, 1, 59–73. [Google Scholar] [CrossRef]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Goulier, L.; Paas, B.; Ehrnsperger, L.; Klemm, O. Modelling of urban air pollutant concentrations with artificial neural networks using novel input variables. Int. J. Environ. Res. Public Health 2020, 17, 2025. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Thé, J.; Xie, G.; Yu, H. Multi-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: A case study of Huaihai Economic Zone. J. Clean. Prod. 2020, 277, 123231. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kumar, A. Evaluation of indoor air quality models with the ranked statistical performance measures using available software. Environ. Prog. Sustain. Energy 2012, 31, 170–175. [Google Scholar] [CrossRef]
- Alexander, D.L.; Tropsha, A.; Winkler, D.A. Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef] [Green Version]
- Guidance Document on Modelling Quality Objectives and Benchmarking. Available online: https://fairmode.jrc.ec.europa.eu/document/fairmode/WG1/Guidance_MQO_Bench_vs3.1.1.pdf (accessed on 20 February 2021).
- Just, A.C.; Arfer, K.B.; Rush, J.; Dorman, M.; Shtein, A.; Lyapustin, A.; Kloog, I. Advancing methodologies for applying machine learning and evaluating spatiotemporal models of fine particulate matter (PM2.5) using satellite data over large regions. Atmos. Environ. 2020, 239, 117649. [Google Scholar] [CrossRef]
- Masmoudi, S.; Elghazel, H.; Taieb, D.; Yazar, O.; Kallel, A. A machine-learning framework for predicting multiple air pollutants’ concentrations via multi-target regression and feature selection. Sci. Total Environ. 2020, 715, 136991. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Ma, Q.; Wang, Y.; Wang, Q.; Huang, Z.; Huang, L. A feature selection and multi-model fusion-based approach of predicting air quality. ISA Trans. 2020, 100, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yim, S.H.L.; Ho, K.F. High temporal resolution prediction of street-level PM2.5 and NOx concentrations using machine learning approach. J. Clean. Prod. 2020, 268, 121975. [Google Scholar] [CrossRef]
- Fong, I.H.; Li, T.; Fong, S.; Wong, R.K.; Tallón-Ballesteros, A.J. Predicting concentration levels of air pollutants by transfer learning and recurrent neural network. Knowl.-Based Syst. 2020, 192, 105622. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Zhao, G.; Lian, J. Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks. Environ. Model. Softw. 2020, 124, 104600. [Google Scholar] [CrossRef]
- Shah, J.; Mishra, B. Analytical Equations based Prediction Approach for PM2.5 using Artificial Neural Network. arXiv 2020, arXiv:2002.11416. [Google Scholar]
- Enebish, T.; Chau, K.; Jadamba, B.; Franklin, M. Predicting ambient PM2.5 concentrations in Ulaanbaatar, Mongolia with machine learning approaches. J. Expo. Sci. Environ. Epidemiol. 2020, 1–10. [Google Scholar] [CrossRef]
- Chang, Y.S.; Chiao, H.T.; Abimannan, S.; Huang, Y.P.; Tsai, Y.T.; Lin, K.M. An LSTM-based aggregated model for air pollution forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [Google Scholar] [CrossRef]
- Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef]
- Mo, Y.; Li, Q.; Karimian, H.; Fang, S.; Tang, B.; Chen, G.; Sachdeva, S. A novel framework for daily forecasting of ozone mass concentrations based on cycle reservoir with regular jumps neural networks. Atmos. Environ. 2020, 220, 117072. [Google Scholar] [CrossRef]
- Xu, X.; Ren, W. Prediction of Air Pollution Concentration Based on mRMR and Echo State Network. Appl. Sci. 2019, 9, 1811. [Google Scholar] [CrossRef] [Green Version]
- Benitez-Paez, F.; Degbelo, A.; Trilles, S.; Huerta, J. Roadblocks hindering the reuse of open geodata in Colombia and Spain: A data user’s perspective. ISPRS Int. J. Geo-Inf. 2018, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Iskandaryan, D.; Ramos, F.; Trilles, S. The Features of the Selected Papers in the Field of Air Quality Prediction. 2020. Available online: http://doi.org/10.5281/zenodo.4302469 (accessed on 27 February 2021).
- Xu, J.; Wang, A.; Schmidt, N.; Adams, M.; Hatzopoulou, M. A gradient boost approach for predicting near-road ultrafine particle concentrations using detailed traffic characterization. Environ. Pollut. 2020, 265, 114777. [Google Scholar] [CrossRef]
- Chang, Y.S.; Abimannan, S.; Chiao, H.T.; Lin, C.Y.; Huang, Y.P. An ensemble learning based hybrid model and framework for air pollution forecasting. Environ. Sci. Pollut. Res. 2020, 27, 38155–38168. [Google Scholar] [CrossRef] [PubMed]
- Castelli, M.; Clemente, F.M.; Popovič, A.; Silva, S.; Vanneschi, L. A Machine Learning Approach to Predict Air Quality in California. Complexity 2020, 2020, 8049504. [Google Scholar] [CrossRef]
- Bozdağ, A.; Dokuz, Y.; Gökçek, Ö.B. Spatial prediction of PM10 concentration using machine learning algorithms in Ankara, Turkey. Environ. Pollut. 2020, 263, 114635. [Google Scholar] [CrossRef]
- Feng, R.; Gao, H.; Luo, K.; Fan, J.R. Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron. Atmos. Environ. 2020, 232, 117534. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, Y.; Li, H. Investigation of model ensemble for fine-grained air quality prediction. China Commun. 2020, 17, 207–223. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Li, S.; Li, X.; Meng, J.; Hou, Z.; Liu, J.; Chen, Y. Air Pollution Forecasting Using Artificial and Wavelet Neural Networks with Meteorological Conditions. Aerosol Air Qual. Res. 2020, 20, 1429–1439. [Google Scholar] [CrossRef]
- Pak, U.; Ma, J.; Ryu, U.; Ryom, K.; Juhyok, U.; Pak, K.; Pak, C. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China. Sci. Total Environ. 2020, 699, 133561. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Lee, H.; Lee, G. A Hybrid Deep Learning Model to Forecast Particulate Matter Concentration Levels in Seoul, South Korea. Atmosphere 2020, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Lin, L.; Chen, C.Y.; Tsao, Y.; Yao, T.H.; Fei, M.H.; Fang, S.H. Forecasting Air Quality in taiwan by Using Machine Learning. Sci. Rep. 2020, 10, 4153. [Google Scholar] [CrossRef] [PubMed]
- Danesh Yazdi, M.; Kuang, Z.; Dimakopoulou, K.; Barratt, B.; Suel, E.; Amini, H.; Lyapustin, A.; Katsouyanni, K.; Schwartz, J. Predicting Fine Particulate Matter (PM2.5) in the Greater London Area: An Ensemble Approach using Machine Learning Methods. Remote Sens. 2020, 12, 914. [Google Scholar] [CrossRef] [Green Version]
- Zalakeviciute, R.; Bastidas, M.; Buenaño, A.; Rybarczyk, Y. A Traffic-Based Method to Predict and Map Urban Air Quality. Appl. Sci. 2020, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Gu, K.; Xia, Z.; Qiao, J. Stacked selective ensemble for PM2.5 forecast. IEEE Trans. Instrum. Meas. 2019, 69, 660–671. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Z.; Qu, Y.; Xu, J.; Cao, Y. Application of the xgboost machine learning method in PM2.5 prediction: A case study of shanghai. Aerosol Air Qual. Res. 2020, 20, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, D.; Guo, Q. Deep Learning From Spatio-Temporal Data Using Orthogonal Regularizaion Residual CNN for Air Prediction. IEEE Access 2020, 8, 66037–66047. [Google Scholar] [CrossRef]
- Zhang, D.; Woo, S.S. Real Time Localized Air Quality Monitoring and Prediction Through Mobile and Fixed IoT Sensing Network. IEEE Access 2020, 8, 89584–89594. [Google Scholar] [CrossRef]
- Zhai, W.; Cheng, C. A long short-term memory approach to predicting air quality based on social media data. Atmos. Environ. 2020, 237, 117411. [Google Scholar] [CrossRef]
- Photphanloet, C.; Lipikorn, R. PM10 concentration forecast using modified depth-first search and supervised learning neural network. Sci. Total Environ. 2020, 727, 138507. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C. Spatial air quality index prediction model based on decomposition, adaptive boosting, and three-stage feature selection: A case study in China. J. Clean. Prod. 2020, 265, 121777. [Google Scholar] [CrossRef]
- Altikat, A. Modeling air pollution levels in volcanic geological regional properties and microclimatic conditions. Int. J. Environ. Sci. Technol. 2020, 17, 2377–2384. [Google Scholar] [CrossRef]
- Hijjawi, M.A.M.S.M. Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Study in Amman, Jordan. Int. J. Autom. Comput. 2020, 17, 667–677. [Google Scholar]
- Kim, S.H.; Son, D.S.; Park, M.H.; Hwang, H.S. Developing a Big Data Analytic Model and a Platform for Particulate Matter Prediction: A Case Study. Int. J. Fuzzy Log. Intell. Syst. 2019, 19, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.W.; Chang, C.L.; Li, L.T.; Liao, S.W. Reinforcement Learning for Improving the Accuracy of PM2.5 Pollution Forecast Under the Neural Network Framework. IEEE Access 2019, 8, 9864–9874. [Google Scholar] [CrossRef]
- Eslami, E.; Salman, A.K.; Choi, Y.; Sayeed, A.; Lops, Y. A data ensemble approach for real-time air quality forecasting using extremely randomized trees and deep neural networks. Neural Comput. Appl. 2019, 32, 7563–7579. [Google Scholar] [CrossRef]
- Li, L.; Girguis, M.; Lurmann, F.; Wu, J.; Urman, R.; Rappaport, E.; Ritz, B.; Franklin, M.; Breton, C.; Gilliland, F.; et al. Cluster-based bagging of constrained mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction over large regions. Environ. Int. 2019, 128, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X. Predicting ground-level PM2.5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach. Environ. Pollut. 2019, 249, 735–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Cui, L.; Meng, Y.; Zhao, Y.; Fu, H. Satellite-based prediction of daily SO2 exposure across China using a high-quality random forest-spatiotemporal Kriging (RF-STK) model for health risk assessment. Atmos. Environ. 2019, 208, 10–19. [Google Scholar] [CrossRef]
- Qin, D.; Yu, J.; Zou, G.; Yong, R.; Zhao, Q.; Zhang, B. A novel combined prediction scheme based on CNN and LSTM for urban PM2.5 concentration. IEEE Access 2019, 7, 20050–20059. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Gao, M.; Ma, Q.; Zhao, J.; Zhang, R.; Wang, Q.; Huang, L. A predictive data feature exploration-based air quality prediction approach. IEEE Access 2019, 7, 30732–30743. [Google Scholar] [CrossRef]
- Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE Access 2019, 7, 76690–76698. [Google Scholar] [CrossRef]
- Ameer, S.; Shah, M.A.; Khan, A.; Song, H.; Maple, C.; Islam, S.U.; Asghar, M.N. Comparative analysis of machine learning techniques for predicting air quality in smart cities. IEEE Access 2019, 7, 128325–128338. [Google Scholar] [CrossRef]
- Munkhdalai, L.; Munkhdalai, T.; Park, K.H.; Amarbayasgalan, T.; Erdenebaatar, E.; Park, H.W.; Ryu, K.H. An end-to-end adaptive input selection with dynamic weights for forecasting multivariate time series. IEEE Access 2019, 7, 99099–99114. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Gan, V.J.; Lin, C.; Wan, Z. Spatiotemporal prediction of PM2.5 concentrations at different time granularities using IDW-BLSTM. IEEE Access 2019, 7, 107897–107907. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.J.; Chang, L.C.; Kao, I.F.; Wang, Y.S.; Kang, C.C. Multi-output support vector machine for regional multi-step-ahead PM2.5 forecasting. Sci. Total Environ. 2019, 651, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Karimian, H.; Li, Q.; Wu, C.; Qi, Y.; Mo, Y.; Chen, G.; Zhang, X.; Sachdeva, S. Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol Air Qual. Res. 2019, 19, 1400–1410. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, J.A. A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Sci. Total Environ. 2019, 651, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Krishan, M.; Jha, S.; Das, J.; Singh, A.; Goyal, M.K.; Sekar, C. Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Qual. Atmos. Health 2019, 12, 899–908. [Google Scholar] [CrossRef]
- Jia, M.; Cheng, X.; Zhao, X.; Yin, C.; Zhang, X.; Wu, X.; Wang, L.; Zhang, R. Regional Air Quality Forecast Using a Machine Learning Method and the WRF Model over the Yangtze River Delta, East China. Aerosol Air Qual. Res. 2019, 19, 1602–1613. [Google Scholar] [CrossRef]
- Xing, Y.; Yue, J.; Chen, C.; Xiang, Y.; Chen, Y.; Shi, M. A Deep Belief Network Combined with Modified Grey Wolf Optimization Algorithm for PM2.5 Concentration Prediction. Appl. Sci. 2019, 9, 3765. [Google Scholar] [CrossRef] [Green Version]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 Prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.; Saranya, P. A novel bagging ensemble approach for predicting summertime ground-level ozone concentration. J. Air Waste Manag. Assoc. 2019, 69, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Zheng, H.j.; Zhang, A.r.; Huang, C.; Gao, H.; Ma, Y.c. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison: A case study in hangzhou, China. Environ. Pollut. 2019, 252, 366–378. [Google Scholar] [CrossRef]
- Masih, A. Application of ensemble learning techniques to model the atmospheric concentration of SO2. Glob. J. Environ. Sci. Manag. 2019, 5, 309–318. [Google Scholar]
- Shih, D.H.; Wu, T.W.; Liu, W.X.; Shih, P.Y. An Azure ACES Early Warning System for Air Quality Index Deteriorating. Int. J. Environ. Res. Public Health 2019, 16, 4679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delavar, M.R.; Gholami, A.; Shiran, G.R.; Rashidi, Y.; Nakhaeizadeh, G.R.; Fedra, K.; Hatefi Afshar, S. A novel method for improving air pollution prediction based on machine learning approaches: A case study applied to the capital city of Tehran. ISPRS Int. J. Geo-Inf. 2019, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network. Computing 2018, 100, 825–838. [Google Scholar] [CrossRef]
- Pucer, J.F.; Pirš, G.; Štrumbelj, E. A Bayesian approach to forecasting daily air-pollutant levels. Knowl. Inf. Syst. 2018, 57, 635–654. [Google Scholar]
- Yang, W.; Deng, M.; Xu, F.; Wang, H. Prediction of hourly PM2.5 using a space-time support vector regression model. Atmos. Environ. 2018, 181, 12–19. [Google Scholar] [CrossRef]
- Zhou, Y.; De, S.; Ewa, G.; Perera, C.; Moessner, K. Data-driven air quality characterization for urban environments: A case study. IEEE Access 2018, 6, 77996–78006. [Google Scholar] [CrossRef]
- Freeman, B.S.; Taylor, G.; Gharabaghi, B.; Thé, J. Forecasting air quality time series using deep learning. J. Air Waste Manag. Assoc. 2018, 68, 866–886. [Google Scholar] [CrossRef]
- Martınez-Espana, R.; Bueno-Crespo, A.; Timón, I.; Soto, J.; Munoz, A.; Cecilia, J.M. Air-Pollution Prediction in Smart Cities through Machine Learning Methods: A Case of Study in Murcia, Spain. J. Univers. Comput. Sci. 2018, 24, 261–276. [Google Scholar]
- Eldakhly, N.M.; Aboul-Ela, M.; Abdalla, A. A novel approach of weighted support vector machine with applied chance theory for forecasting air pollution phenomenon in Egypt. Int. J. Comput. Intell. Appl. 2018, 17, 1850001. [Google Scholar] [CrossRef]
- Huang, C.J.; Kuo, P.H. A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Cai, C.; Yang, T.; Zhou, X. A machine learning approach for air quality prediction: Model regularization and optimization. Big Data Cogn. Comput. 2018, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Awad, Y.A.; Koutrakis, P.; Coull, B.A.; Schwartz, J. A spatio-temporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States. Environ. Res. 2017, 159, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Huang, H.; Du, W. Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos. Environ. 2017, 150, 146–161. [Google Scholar] [CrossRef]
- Kleine Deters, J.; Zalakeviciute, R.; Gonzalez, M.; Rybarczyk, Y. Modeling PM2.5 urban pollution using machine learning and selected meteorological parameters. J. Electr. Comput. Eng. 2017, 2017, 5106045. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Luo, Y.; Deng, X.; Chen, H.; Grieneisen, M.L.; Shen, X.; Zhu, L.; Zhang, M. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 2017, 155, 129–139. [Google Scholar] [CrossRef]
- Al-Dabbous, A.N.; Kumar, P.; Khan, A.R. Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos. Pollut. Res. 2017, 8, 446–454. [Google Scholar] [CrossRef]
- Eldakhly, N.M.; Aboul-Ela, M.; Abdalla, A. Air pollution forecasting model based on chance theory and intelligent techniques. Int. J. Artif. Intell. Tools 2017, 26, 1750024. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, W. Prediction of air pollutants concentration based on an extreme learning machine: The case of Hong Kong. Int. J. Environ. Res. Public Health 2017, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.C.; Binaykia, A.; Chang, P.C.; Tiwari, M.K.; Tsao, C.C. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 2017, 12, e0179763. [Google Scholar] [CrossRef]
- Shaban, K.B.; Kadri, A.; Rezk, E. Urban air pollution monitoring system with forecasting models. IEEE Sens. J. 2016, 16, 2598–2606. [Google Scholar] [CrossRef]
- Tamas, W.; Notton, G.; Paoli, C.; Nivet, M.L.; Voyant, C. Hybridization of air quality forecasting models using machine learning and clustering: An original approach to detect pollutant peaks. Aerosol Air Qual. Res. 2016, 16, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Sayegh, A.S.; Munir, S.; Habeebullah, T.M. Comparing the performance of statistical models for predicting PM10 concentrations. Aerosol Air Qual. Res. 2014, 14, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Debry, E.; Mallet, V. Ensemble forecasting with machine learning algorithms for ozone, nitrogen dioxide and PM10 on the Prev’Air platform. Atmos. Environ. 2014, 91, 71–84. [Google Scholar] [CrossRef]
- Papaleonidas, A.; Iliadis, L. Neurocomputing techniques to dynamically forecast spatiotemporal air pollution data. Evol. Syst. 2013, 4, 221–233. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Rai, P. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 2013, 80, 426–437. [Google Scholar] [CrossRef]
- Vong, C.M.; Ip, W.F.; Wong, P.k.; Yang, J.y. Short-term prediction of air pollution in Macau using support vector machines. J. Control Sci. Eng. 2012, 2012, 518032. [Google Scholar] [CrossRef] [Green Version]
- Yeganeh, B.; Motlagh, M.S.P.; Rashidi, Y.; Kamalan, H. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model. Atmos. Environ. 2012, 55, 357–365. [Google Scholar] [CrossRef]
- Rahman, S.M.; Khondaker, A.; Abdel-Aal, R. Self organizing ozone model for Empty Quarter of Saudi Arabia: Group method data handling based modeling approach. Atmos. Environ. 2012, 59, 398–407. [Google Scholar] [CrossRef]
- Mallet, V.; Stoltz, G.; Mauricette, B. Ozone ensemble forecast with machine learning algorithms. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Men, C.; Lu, W. Online prediction model based on support vector machine. Neurocomputing 2008, 71, 550–558. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Papers written in English | Non-English written papers |
Publications in scientific journals | Non-reviewed papers, editorials, presentations |
Publications until 28 September 2020 | Publications after 28 September 2020 |
Publications focused on outdoor air pollution | Publications focused on indoor air pollution |
Extra dataset together with air quality data | Using only air quality data |
Analysis with implementation of ML techniques | Analysis without implementation of ML techniques |
Models applied for forecasting purpose | Works without forecasting models |
Dataset Combinations | Publications Numbers |
---|---|
MET | 45 |
MET, Temporal | 11 |
MET, Spatial, Temporal | 5 |
Spatial | 3 |
MET, AOD | 2 |
MET, Traffic | 2 |
MET, Social Media | 2 |
Others | 23 |
Metrics | Equations | Description |
---|---|---|
RMSE | It measures the geometric difference between observed and predict data. | |
MAE | It measures the average magnitude of the errors in a set of predictions, without considering their direction. | |
R2 | It shows how differences in one variable can be explained by a difference in a second variable. | |
R | It measures the strength and the direction of a linear relationship between two variables. | |
MAPE | It measures the size of the error in percentage terms. | |
IA | It is the ratio of the mean square error and the potential error. | |
MSE | It measures the average squared difference between the observed and the predict values | |
NRMSE | It is the normalised version of RMSE, which makes easier to compare different models with different scales. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iskandaryan, D.; Ramos, F.; Trilles, S. Features Exploration from Datasets Vision in Air Quality Prediction Domain. Atmosphere 2021, 12, 312. https://doi.org/10.3390/atmos12030312
Iskandaryan D, Ramos F, Trilles S. Features Exploration from Datasets Vision in Air Quality Prediction Domain. Atmosphere. 2021; 12(3):312. https://doi.org/10.3390/atmos12030312
Chicago/Turabian StyleIskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles. 2021. "Features Exploration from Datasets Vision in Air Quality Prediction Domain" Atmosphere 12, no. 3: 312. https://doi.org/10.3390/atmos12030312
APA StyleIskandaryan, D., Ramos, F., & Trilles, S. (2021). Features Exploration from Datasets Vision in Air Quality Prediction Domain. Atmosphere, 12(3), 312. https://doi.org/10.3390/atmos12030312