Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Mean Climate in the Boreal Winter
3.2. Basic Diagnostics in MJO Properties
3.3. Evaluation of MJO Simulations Using Dynamic-Oriented Diagnostics
3.4. Diagnosing BSISO Simulations
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, L.; Alves, O.; Hendon, H.H.; Wang, G.; Anderson, D. The role of stochastic forcing in ensemble forecasts of the 1997/98 El Nino. J. Clim. 2009, 22, 2526–2540. [Google Scholar] [CrossRef]
- Vitart, F.; Molteni, F. Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Q. J. R. Meteorol. Soc. 2010, 136, 842–855. [Google Scholar] [CrossRef]
- Waliser, D.E. Intraseasonal variability. In The Asian Monsoon; Springer: Berlin/Heidelberg, Germany, 2006; pp. 203–257. [Google Scholar]
- Jiang, X.; Waliser, D.E.; Xavier, P.K.; Petch, J.; Klingaman, N.P.; Woolnough, S.J.; Guan, B.; Bellon, G.; Crueger, T.; DeMott, C.; et al. Vertical structure and physical processes of the Madden–Julian Oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos. 2015, 120, 4718–4748. [Google Scholar] [CrossRef]
- Maloney, E.D.; Sobel, A.H.; Hannah, W.M. Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst. 2010, 2, 1–24. [Google Scholar] [CrossRef]
- Benedict, J.J.; Benedict, J.J.; Maloney, E.D.; Sobel, A.H.; Frierson, D.M.W. Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci. 2014, 71, 3327–3349. [Google Scholar] [CrossRef]
- Wang, B. Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci. 1988, 45, 2051–2065. [Google Scholar] [CrossRef]
- Wang, B.; Rui, H. Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci. 1990, 47, 397–413. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, K.; Takayabu, Y.N. The development of organized convection associated with the MJO during TOGA COARE IOP:trimodal characteristics. Geophys. Res. Lett. 2004, 31, L10104131. [Google Scholar] [CrossRef]
- Katsumata, M.; Johnson, R.H.; Ciesielski, P.E. Observed synoptic-scale variability during the developing phase of an ISO over the Indian Ocean during MISMO. J. Atmos. Sci. 2009, 66, 3434–3448. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Z. A moisture–stratiform instability for convectively coupled waves. J. Atmos. Sci. 2008, 65, 834–854. [Google Scholar] [CrossRef]
- Fu, X.; Wang, B. Critical roles of the stratiform rainfall in sustaining the Madden–Julian Oscillation: GCM experiments. J. Clim. 2009, 22, 3939–3959. [Google Scholar] [CrossRef]
- Lee, M.I.; Kang, I.-S.; Kim, J.-K.; Mapes, B.E. Influence of cloud–radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res. Atmos. 2001, 106, 14219–14233. [Google Scholar] [CrossRef]
- Raymond, D.J. A new model of the Madden–Julian Oscillation. J. Atmos. Sci. 2001, 58, 2807–2819. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Chen, G. A trio-interaction theory for Madden–Julian Oscillation. Geosci. Lett. 2016, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-M.; Lee, J.-Y.; Wang, B. The Tibetan Plateau uplift is crucial for eastward propagation of Madden–Julian Oscillation. Sci. Rep. 2019, 9, 15478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-M.; Wang, B.; Lee, J.-Y. Mechanisms of northward propagation of boreal summer intraseasonal oscillation revealed by climate model experiments. Geophys. Res. Lett. 2019, 46, 3417–3425. [Google Scholar] [CrossRef]
- Wang, B.; Lee, S.-S.; Waliser, D.E.; Zhang, C.; Sobel, A.; Maloney, E.; Li, T.; Jiang, X.; Ha, K.-J. Dynamics-oriented diagnostics for the Madden–Julian Oscillation. J. Clim. 2018, 31, 3117–3135. [Google Scholar] [CrossRef]
- Kim, H.; Webster, P.J.; Toma, V.E.; Kim, D. Predictability and prediction skill of the MJO in two operational forecasting systems. J. Clim. 2014, 27, 5364–5378. [Google Scholar] [CrossRef]
- Lim, Y.; Son, S.; Kim, D. MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Clim. 2018, 31, 4075–4094. [Google Scholar] [CrossRef]
- Maloney, E.D.; Hartmann, D.L. The Madden-Julian oscillation, Barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci. 2001, 58, 2545–2558. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.-Y.; Wang, B.; Ha, K.-J.; Lee, J.-Y. Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Clim. Dyn. 2013, 40, 2761–2774. [Google Scholar] [CrossRef]
- Wang, B.; Xie, X. A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci. 1997, 54, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Li, T.; Wang, B. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Clim. 2004, 17, 1022–1039. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Lee, J.-Y.; Wang, B. Dominant Process for Northward Propagation of Boreal Summer Intraseasonal Oscillation Over the Western North Pacific. Geophys. Res. Lett. 2020, 47, e2020GL089808. [Google Scholar] [CrossRef]
- DeMott, C.A.; Stan, C.; Randall, D.A. Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Clim. 2013, 26, 1973–1992. [Google Scholar] [CrossRef]
- Liu, F.; Wang, B.; Kang, I.-S. Role of barotropic convective momentum transport in the intraseasonal oscillation. J. Clim. 2015, 28, 4908–4920. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhao, J.; Fu, X.; Huang, G. The role of shallow convection in promoting the northward propagation of boreal summer intraseasonal oscillation. Theor. Appl. Climatol. 2018, 131, 1387–1395. [Google Scholar] [CrossRef]
- Mogensen, K.; Balmaseda, M.; Weaver, A.T.; Martin, M.; Vidard, A. NEMOVAR: A variational data assimilation system for the NEMO ocean model. In ECMWF Newsletter; Walter, Z., Ed.; ECMWF: Reading, UK, 2009; Volume 120, pp. 17–21. [Google Scholar]
- Mogensen, K.; Balmaseda, M.A.; Weaver, A.T. The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. In Technical Report TR-CMGC-12-30; CERFACS: Toulouse, France, 2012. [Google Scholar]
- Bowler, N.; Arribas, A.; Beare, S.; Mylne, K.E.; Shutts, G. The local ETKF and SKEB:Upgrades to the MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 2009, 135, 767–776. [Google Scholar] [CrossRef]
- Williams, K.D.; Harris, C.M.; Bodas-Salcedo, A.; Camp, J.; Comer, R.E.; Copsey, D.; Fereday, D.; Graham, T.; Hill, R.; Hinton, T.; et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 2015, 8, 1509–1524. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Liebmann, B.; Catherine, A.S. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Valcke, S. The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev. 2013, 6, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Gregory, D.; Rowntree, P.R. A massflux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Weather Rev. 1990, 118, 1483–1506. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Li, T. Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian Oscillation. J. Clim. 2012, 25, 4914–4931. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.H.; Ciesielski, P.E.; Ruppert, J.H., Jr.; Katsumata, M. Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci. 2015, 72, 598–622. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-M.; Shim, T.; Moon, J.-Y.; Kim, K.-Y.; Hyun, Y.-K. Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory. Atmosphere 2021, 12, 114. https://doi.org/10.3390/atmos12010114
Yang Y-M, Shim T, Moon J-Y, Kim K-Y, Hyun Y-K. Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory. Atmosphere. 2021; 12(1):114. https://doi.org/10.3390/atmos12010114
Chicago/Turabian StyleYang, Young-Min, Taehyoun Shim, Ja-Yeon Moon, Ki-Young Kim, and Yu-Kyung Hyun. 2021. "Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory" Atmosphere 12, no. 1: 114. https://doi.org/10.3390/atmos12010114
APA StyleYang, Y. -M., Shim, T., Moon, J. -Y., Kim, K. -Y., & Hyun, Y. -K. (2021). Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory. Atmosphere, 12(1), 114. https://doi.org/10.3390/atmos12010114