Anomalous Atmospheric Circulation Associated with the Extremely Persistent Dense Fog Events over Eastern China in the Late Autumn of 2018
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. The Extremely Persistent Dense Fog Events Over Eastern China in the Late Autumn of 2018
3.2. The Climate Anomalies of Fog Days in Late Autumn of 2018
3.3. Meteorological Conditions Conducive to the Persistent Dense Fog Events
3.3.1. Dynamical Conditions
3.3.2. Thermal Conditions
3.3.3. Vapor Conditions
3.4. The Associated Anomalous Atmospheric Circulations
3.4.1. Anomalous Dynamic Circulations
3.4.2. Anomalous Thermal Circulations
3.4.3. Anomalous Vapor Circulations
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiusto, J.E. Fog structure. In Clouds, Their Formation, Optical Properties and Effect; Hobbs, P.V., Deepak, A., Eds.; Academic Press: New York, NY, USA, 1981; pp. 187–239. [Google Scholar]
- Nemery, B.; Hoet, P.H.; Nemmar, A. The Meuse Valley fog of 1930, an air pollution disaster. Lancet 2001, 357, 704–708. [Google Scholar] [PubMed]
- Houssos, E.E.; Lolis, C.J.; Bartzokas, A. The main characteristics of atmospheric circulation associated with fog in Greece. Nat. Hazard. Earth Syst. 2009, 9, 1857–1869. [Google Scholar]
- Gautam, R.; Singh, M.K. Urban heat island over Delhi Punches Holes in widespread fog in the Indo–Gangetic Plains. Geophys. Res. Lett. 2018, 45, 1114–1121. [Google Scholar]
- Li, Z.H.; Yang, J.; Shi, C.E. The Physics of Regional Dense Fog; China Meteor Press: Beijing, China, 2008; p. 160. (In Chinese) [Google Scholar]
- Ye, H. The influence of air temperature and atmospheric circulation on winter fog frequency over Northern Eurasia. Int. J. Climatol. 2009, 29, 729–734. [Google Scholar]
- Emmons, G.; Montgomery, R.B. Notes on the physics of fog formation. J. Meteorol. 1947, 4, 206. [Google Scholar]
- Choularton, T.W.; Fullarton, G.; Latham, J.; Mill, C.S. A field study of radiation fog in Meppen, West Germany. Q. J. R. Meteorol. Soc. 1981, 107, 381–394. [Google Scholar]
- Brown, R.; Roach, W.T. The physics of radiation fog, II–a numerical study. Q. J. R. Meteorol. Soc. 1976, 102, 335–354. [Google Scholar]
- Herckes, P.; Marcotte, A.R.; Wang, Y.; Collett, J. Fog composition in the Central Valley of California over three decades. Atmos. Res. 2015, 151, 20–30. [Google Scholar]
- Degefie, D.T.; El–Madany, T.S.; Hejkal, J.; Held, J. Microphysics and energy and water fluxes of various fog types at SIRTA, France. Atmos. Res. 2015, 151, 162–175. [Google Scholar]
- Stolaki, S.; Haeffelin, M.; Lac, C.; Dupont, J.C.; Elias, T.; Masson, V. Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study. Atmos. Res. 2015, 151, 146–161. [Google Scholar]
- Guedalia, D.; Bergot, T. Numerical Forecasting of Radiation Fog. Part II, A Comparison of Model Simulation with Several Observed Fog Events. Mon. Weather Rev. 1994, 122, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Houssos, E.E.; Lolis, C.J.; Gkikas, A.; Hatzianastassiou, N.; Bartzokas, A. On the atmospheric circulation characteristics associated with fog in Ioannina, north–western Greece. Int. J. Climatol. 2011, 32, 1847–1862. [Google Scholar] [CrossRef]
- Zhang, R.H.; Li, Q.; Zhang, R.N. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci. 2014, 57, 26–35. [Google Scholar]
- Telišeli–Prtenjak, M.; Klaić, M.; Cuxart, J.; Jerirević, A. The interaction of the downslope winds and fog formation over the Zagreb area. Atmos. Res. 2017, 214, 213–227. [Google Scholar] [CrossRef]
- Willett, H.C. Fog and Haze, Their Causes, Distribution, and Forecasting. Mon. Weather Rev. 1928, 56, 435–468. [Google Scholar] [CrossRef]
- Meyer, M.B.; Lala, G.G. Climatological aspects of Radiation Fog Occurrence at Albany, New York. J. Clim. 1990, 3, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Bergot, T.; Guedalia, D. Evaluation of the success of fog forecasting by a numerical model. Meteorologie 1996, 14, 27–35. [Google Scholar]
- Van der Velde, I.R.; Steeneveld, G.J.; Wichers Schreur, B.G.J.; Holtslag, A.A.M. Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions. Mon. Weather Rev. 2010, 138, 4237–4253. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M. The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models. Bound. Lay. Meteorol. 2015, 154, 265–289. [Google Scholar] [CrossRef]
- Herman, G.R.; Schumacher, R.S. Using Reforecasts to Improve Forecasting of Fog and Visibility for Aviation. Weather Forecast. 2016, 31, 467–482. [Google Scholar] [CrossRef]
- Meng, Y.J.; Wang, S.Y.; Zhao, X.F. An analysis of air pollution and weather conditions during heavy fog days in Beijing area. Meteorl. Mon. 2000, 26, 40–42. [Google Scholar]
- Liu, X.N.; Zhang, H.Z.; Li, Q.X.; Zhu, Y.J. Preliminary research on the climatic characteristics and change of fog in China (in Chinese). J. Appl. Meteorol. Sci. 2005, 16, 220–229. [Google Scholar]
- Lin, J.; Yang, G.M.; Mao, D.Y. Spatial and temporal characteristics of fog in China and associated circulation patterns (in Chinese). Clim. Environ. Res. 2008, 13, 171–181. [Google Scholar]
- Wu, D.; Bi, X.Y.; Deng, X.J.; Li, F.; Tan, H.B.; Liao, G.L.; Huang, J. Effect of atmospheric haze on the deterioration of visibility over the Pearl River Delta. Acta Meteorol. Sin. 2007, 21, 215–223. [Google Scholar]
- Ding, Y.H.; Liu, Y.J. Analysis of long–term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Sci. China Earth Sci. 2014, 57, 36–46. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, C.S.; Chen, J.; Xu, W.Y.; Yan, P.; Zhou, X.J.A. novel method for distinguishing fog and haze based on pm2.5, visibility, and relative humidity. Sci. China Earth Sci. 2014, 57, 2156–2164. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, Y.Q.; Niu, T.; Zhang, X.C. Atmospheric aerosol compositions in China, spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Ma, Z.F.; Niu, T.; Fu, R.Y.; Hu, J.F. Characteristics of climate change with respect to fog days and haze days in China in the past 40 years(in Chinese). Clim. Environ. Res. 2013, 18, 397–406. [Google Scholar]
- Wu, D. More discussions on the differences between haze and fog in city (in Chinese). Meteorl. Mon. 2006, 32, 9–15. [Google Scholar]
- Hart, R.E.; Grumm, R.H. Using Normalized Climatological Anomalies to Rank Synoptic–Scale Events Objectively. Mon. Weather Rev. 2001, 129, 2426–2442. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-interim reanalysis, configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Liu, D.Y.; Yang, J.; Niu, S.J.; Li, Z.H. On the evolution and structure of a radiation fog event in Nanjing. Adv. Atmos. Sci. 2011, 28, 223–237. [Google Scholar] [CrossRef]
- Eady, E.T. Long waves and cyclone waves. Tellus 1949, 1, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Valdes, P.J. On the existence of storm–tracks. J. Atmos. Sci. 1990, 47, 1854–1864. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Farrell, B. A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci. 1980, 37, 1648–1654. [Google Scholar] [CrossRef] [Green Version]
- Rodhe, B. The effect of turbulence on fog formation. Tellus 1962, 14, 49–86. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Ferrier, B.S. Asymptotic Analysis of Equilibrium in Radiation Fog. J. Appl. Meteorol. Clim. 2008, 47, 1704–1722. [Google Scholar] [CrossRef]
- Grumm, R.H.; Hart, R.E. Standardized Anomalies Applied to Significant Cold Season Weather Events, Preliminary Findings. Weather Forecast. 2001, 16, 736–754. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Q.H.; Zhu, Z.W.; Qi, L.; Wang, J.X.L.; He, J.H. Interannual variation in the number and severity of autumnal haze days in the Beijing–Tianjin–Hebei region and associated atmospheric circulation anomalies. Dyn. Atmos. Ocean. 2018, 84, 1–9. [Google Scholar] [CrossRef]
- Yin, Z.C.; Wang, H.J. Role of atmospheric circulations in haze pollution in December 2016. Atmos. Chem. Phys. 2017, 17, 11673–11681. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S. Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events. Sci. Adv. 2020, 6, eaay2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Collier, S.; Ge, X.; Xu, J.; Sun, Y.; Jiang, W.; Wang, Y.; Herckes, P.; Zhang, Q. Chemical processing of water-soluble species and formation of secondary organic aerosol in fogs. Atmos. Environ. 2019, 200, 158–166. [Google Scholar] [CrossRef]
Conditions | Parameters | The Correlation Coefficient |
---|---|---|
dynamical | 10 m wind speed | 0.51 |
1000 hPa wind speed | 0.51 | |
the absolute gradient of sea level pressure | 0.47 | |
1000 hPa vertical velocity | 0.57 | |
700 hPa Eady growth rate (EGR) | 0.49 | |
1000 hPa EGR | −0.51 | |
vertical shear of winds between 500 and 850 hPa | 0.55 | |
thermal | vertical difference of temperature (VDT) between 1000 hPa and 2 m | −0.68 |
VDT between 925 and 1000 hPa | −0.64 | |
VDT between 1000 hPa and the skin surface | −0.75 | |
VDT between 2 m and the skin surface | −0.74 | |
925 hPa temperature advection | −0.45 | |
vapor | 1000 hPa specific humidity | −0.48 |
The 2 m dew point | −0.54 | |
the 2 m dew point depression | 0.56 | |
1000 hPa relative humidity | −0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Liu, D.; Kang, Z.; Shi, Y.; Liu, M. Anomalous Atmospheric Circulation Associated with the Extremely Persistent Dense Fog Events over Eastern China in the Late Autumn of 2018. Atmosphere 2021, 12, 111. https://doi.org/10.3390/atmos12010111
Chen S, Liu D, Kang Z, Shi Y, Liu M. Anomalous Atmospheric Circulation Associated with the Extremely Persistent Dense Fog Events over Eastern China in the Late Autumn of 2018. Atmosphere. 2021; 12(1):111. https://doi.org/10.3390/atmos12010111
Chicago/Turabian StyleChen, Shengjie, Duanyang Liu, Zhiming Kang, Yan Shi, and Mei Liu. 2021. "Anomalous Atmospheric Circulation Associated with the Extremely Persistent Dense Fog Events over Eastern China in the Late Autumn of 2018" Atmosphere 12, no. 1: 111. https://doi.org/10.3390/atmos12010111
APA StyleChen, S., Liu, D., Kang, Z., Shi, Y., & Liu, M. (2021). Anomalous Atmospheric Circulation Associated with the Extremely Persistent Dense Fog Events over Eastern China in the Late Autumn of 2018. Atmosphere, 12(1), 111. https://doi.org/10.3390/atmos12010111