Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador
Abstract
:1. Introduction
1.1. Emission Inventory from Cuenca
1.2. The Air Quality from Cuenca
1.3. Actions for Controlling Air Pollutant Emissions
1.4. The Forced Lockdown Owing to COVID-19
- Verification of the presence of the WE in Cuenca after 2015;
- The effects on air quality due to the future shift from diesel to electric buses;
- The air quality during the COVID-19 lockdown, and its comparison to previous weeks and years;
- A holistic analysis of these interrelated components to identify insights for air quality management.
2. Method
2.1. WE in Cuenca
2.2. Shift from Diesel to Electric Buses
2.3. Air Quality during the COVID-19 Lockdown
- Weeks before the exception status (01 January 2020 to 16 March 2020), and;
- From 17 March to 16 May, of previous years, from 2015 to 2019. Although there is information available from 2012, we selected 2015 onwards, because records after this year covered at least 70% of days. We selected this percentage to assure the representativeness of records.
3. Results and Discussion
3.1. WE in Cuenca
3.2. Shift from Diesel to Electric Buses
3.3. Air Quality during the COVID-19 Lockdown
- There is a VOC-limited regime, with a VOC/NOx ratio lower than 8. Under this regime, VOC limits O3 production, and NOx reduction promotes O3 production, and;
- Less O3 is titrated because NOx emissions are lower compared to weekdays.
4. Conclusions and Summary
Supplementary Materials
Author Contributions
Acknowledgments
Funding
Conflicts of Interest
References
- Ministerio del Ambiente. Inventario de Emisiones de contaminantes del aire para los cantones Esmeraldas, Ibarra, Santo Domingo, Manta, Portoviejo, Milagro, Riobamba, Ambato y Latacunga, Año Base 2010; Ministerio del Ambiente: Quito, Ecuador, 2012.
- Ministerio del Ambiente. Inventario de Emisiones de contaminantes del aire para los cantones Loja, Azogues, Babahoyo y Quevedo, Año Base: 2010; Ministerio del Ambiente: Quito, Ecuador, 2013. [Google Scholar]
- Molina, M.; Molina, L. Megacities and Atmospheric Pollution. Critical review. J. Air Waste Manag. Assoc. 2004, 54, 644–680. [Google Scholar] [CrossRef] [PubMed]
- EMOV EP. Inventario de Emisiones Atmosféricas del Cantón Cuenca 2014; Empresa Pública de Movilidad: Tránsito y Transporte, Cuenca, Ecuador, 2016; 86p. [Google Scholar]
- Lloyd, A.C.; Cackette, T.A. Diesel engines: Environmental impact and control. J Air Waste Manag. Assoc. 2001, 51, 809–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, M.Z. Atmospheric Pollution History, Science and Regulation; University Press: Cambridge, UK, 2002; p. 399. [Google Scholar]
- Biswas, P.; Wu, C.Y. Nanoparticles and the environment. J Air Waste Manag. Assoc. 2005, 55, 708–746. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, B.J.; Pitts, J., Jr. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 1997, 276, 1046–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Air Quality Guidelines for Europe, Second Edition. World Health Organization Regional Publications, European Series; WHO: Geneva, Switzerland, 2000; No. 91. [Google Scholar]
- Phalen, R. Introduction to Air Pollution Science—A Public Health Perspective, Science and Regulation; Jones & Bartlett Learning: Burlington, LA, USA, 2013; p. 331. [Google Scholar]
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global update 2005. Summary of Risk Assessment; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- IARC. International Agency for Research on Cancer. Available online: https://publications.iarc.fr/538 (accessed on 13 August 2020).
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Gónzalez-Maciel, A.; Reynoso-Robles, R.; Delgado-Chávez, R.; Mukherjee, P.S.; Kulesza, R.J.; Torres-Jardón, R.; Ávila-Ramírez, J.; Villarreal-Ríos, R. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤40 years of age. Environ. Res. 2018, 164, 475–487. [Google Scholar] [CrossRef]
- Cacciottolo, M.; Wang, X.; Driscoll, I.; Woodward, N.; Saffari, A.; Reyes, J.; Serre, M.L.; Vizuete, W.; Sioutas, C.; E Morgan, T.; et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl. Psychiatry 2017, 7, e1022. [Google Scholar] [CrossRef]
- Austin, W.; Heutel, G.; Kreisman, D. School bus emissions, student health and academic performance. Econ. Educ. Rev. 2019, 70, 109–126. [Google Scholar] [CrossRef]
- Peeples, L. News Feature: How air pollution threatens brain health. Proc. Natl. Acad. Sci. USA 2020, 117, 13856–13860. [Google Scholar] [CrossRef]
- Parra, R. Performance studies of planetary boundary layer schemes in wrf-chem for the andean region of southern ecuador. Atmos. Pollut. Res. 2018, 9, 411–528. [Google Scholar] [CrossRef]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef] [Green Version]
- EMOV EP. Informe de calidad del aire Cuenca 2019. Alcaldía de Cuenca. Red de Monitoreo EMOV EP. Cuenca-Ecuador; EMOV EP: Cuenca, Ecuador, 2020; 114p. [Google Scholar]
- EMOV EP. Informe de calidad del aire Cuenca 2013. Alcaldía de Cuenca. Red de Monitoreo EMOV EP. Cuenca-Ecuador; EMOV EP: Cuenca, Ecuador, 2014; 100p. [Google Scholar]
- EMOV EP. Informe de calidad del aire Cuenca 2014. Alcaldía de Cuenca. Red de Monitoreo EMOV EP. Cuenca-Ecuador; EMOV EP: Cuenca, Ecuador, 2015; 97p. [Google Scholar]
- EMOV EP. Informe de calidad del aire Cuenca 2015. Alcaldía de Cuenca. Red de Monitoreo EMOV EP. Cuenca-Ecuador; EMOV EP: Cuenca, Ecuador, 2016; 120p. [Google Scholar]
- EMOV EP. Informe de calidad del aire Cuenca 2016. Alcaldía de Cuenca. Red de Monitoreo EMOV EP. Cuenca-Ecuador; EMOV EP: Cuenca, Ecuador, 2017; 103p. [Google Scholar]
- EMOV EP. Informe de calidad del aire Cuenca 2017. Alcaldía de Cuenca. Red de Monitoreo EMOV EP. Cuenca-Ecuador; EMOV EP: Cuenca, Ecuador, 2018; 121p. [Google Scholar]
- EMOV EP. Informe de calidad del aire Cuenca 2018. Alcaldía de Cuenca. Red de Monitoreo EMOV EP. Cuenca-Ecuador; EMOV EP: Cuenca, Ecuador, 2019; 107p. [Google Scholar]
- Parra, R. Efecto Fin de Semana en la Calidad del Aire de la Ciudad de Cuenca, Ecuador. ACI Av. Cienc. Ing. 2017, 9, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Rumé, S. Reflexiones antropológicas sobre la difícil ejecución del proyecto tranvía en Cuenca. Revista Interuniversitaria de Estudios Urbanos de Ecuador 2018, 4, 25–34. [Google Scholar]
- Ministerio de Energía y Recursos Naturales No Renovables. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/downloads/2019/03/Ley-Eficiencia-Energe%CC%81tica.pdf (accessed on 13 June 2020).
- Nakada, L.Y.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial. Sci. Total Environ. 2020, 730, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Fu, X.; Bartelli, D.; Smith, L. Insignificant impact of the “Stay-At-Home” order on ambient air quality in the memphis metropolitan area, U.S.A. Atmosphere 2020, 11, 630. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paolettie, E.; Diéguez, J.J.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 1–10. [Google Scholar] [CrossRef]
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; Chakir, E.M.; Bouch, M.E.; Krombi, M. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 1–5. [Google Scholar] [CrossRef]
- Presidencia de la República del Ecuador. Consultas de Decretos. 2020. Available online: https://minka.presidencia.gob.ec/portal/usuarios_externos.jsf (accessed on 13 June 2020).
- El Mercurio. Hay Nuevas Reglas Para Circulación en Cuenca. Available online: https://ww2.elmercurio.com.ec/2020/05/31/hay-nuevas-reglas-para-circulacion-en-cuenca/ (accessed on 13 June 2020).
- Seguel, R.; Morales, S.; Leiva, M. Ozone weekend effect in Santiago, Chile. Environ. Pollut. 2012, 162, 72–79. [Google Scholar] [CrossRef]
- Parra, R.; Franco, E. Identifying the Ozone Weekend Effect in the air quality of the northern Andean region of Ecuador. Wit Trans. Ecol. Environ. 2016, 207, 169–180. [Google Scholar]
- WRF. Weather Research and Forecasting Model. Available online: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (accessed on 13 June 2020).
- NCEP. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 13 June 2020).
- Zaveri, R.; Peters, L. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. 1999, 104, 387–415. [Google Scholar] [CrossRef]
- Zaveri, R.; Easter, R.; Fast, J.; Peters, L. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res. 2008, 113, 1–29. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Barker, D.; Duda, M.; Huang, X.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR. NCAR Technical Note. Mesoscale and Microscale Meteorology Division; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Minet, L.; Chowdhury, T.; Wang, A.; Gai, Y.; Daniel Posen, I.; Roorda, M.; Hatzopoulou, M. Quantifying the air quality and health benefits of greening freight movements. Environ. Res. 2020, 183, 109193. [Google Scholar] [CrossRef]
- Soret, A.; Guevara, M.; Baldasano, J.M. The potential impacts of electric vehicles on air quality in the urban areas of Barcelona and Madrid (Spain). Atmos. Environ. 2014, 99, 51–63. [Google Scholar] [CrossRef]
- Nogueira, T.; Dominutti, P.A.; Vieira-Filho, M.; Fornaro, A.; Andrade, M.F. Evaluating Atmospheric Pollutants from Urban Buses under Real-World Conditions: Implications of the Main Public Transport Mode in São Paulo, Brazil. Atmosphere 2019, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Varga, B.O.; Mariasiu, F.; Miclea, C.D.; Szabo, I.; Sirca, A.A.; Nicolae, V. Direct and Indirect Environmental Aspects of an Electric Bus Fleet Under Service. Energies 2020, 13, 336. [Google Scholar] [CrossRef] [Green Version]
- Parra, R. Contribution of Non-renewable Sources for Limiting the Electrical CO2 emission factor in Ecuador. WIT Trans. Ecol. Environ. 2020, 244, 65–77. [Google Scholar]
- Bernard, B.; Battaglia, J.; Proaño, A.; Hidalgo, S.; Vásconez, F.; Hernandez, S.; Ruiz, M. Relationship between volcanic ash fallouts and seismic tremor: Quantitative assessment of the 2015 eruptive period at Cotopaxi volcano, Ecuador. Bull. Volcanol. 2016, 78, 80. [Google Scholar] [CrossRef]
- El Mercurio. Cenizas del Volcán Sangay Cayeron Sobre Cuenca de Forma Leve. Available online: https://ww2.elmercurio.com.ec/2020/03/25/cenizas-del-volcan-sangay-caen-sobre-cuenca-de-forma-leve/ (accessed on 17 June 2020).
- CARB. The ozone weekend effect in California. In Staff Report, the Planning and Technical Support Division, the Research Division, Air Resources Board, California Environmental Protection Agency; CARB: Sacramento, CA, USA, 2003. [Google Scholar]
- Worldview. Available online: https://worldview.earthdata.nasa.gov/ (accessed on 9 September 2020).
Source | NOx | CO | NMVOC | SO2 | PM10 | PM2.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t y−1 | % | t y−1 | % | t y−1 | % | t y−1 | % | t y−1 | % | t y−1 | % | |
On-road traffic | 5981.0 | 71.2 | 58,283.4 | 94.9 | 6065.4 | 39.6 | 67.9 | 4.0 | 800.2 | 55.6 | 384.0 | 42.4 |
Vegetation | - | - | - | - | 2982.0 | 19.5 | - | - | - | - | - | - |
Industries | 654.4 | 7.8 | 257.7 | 0.4 | 156.2 | 1.0 | 1025.9 | 60.4 | 73.1 | 5.1 | 52.1 | 5.7 |
Power facility | 1553.8 | 18.5 | 334.4 | 0.5 | 126.8 | 0.8 | 595.0 | 35.1 | 102.1 | 7.1 | 102.1 | 11.3 |
Use of solvents | - | - | - | - | 4551.7 | 29.7 | - | - | - | - | - | - |
Service stations | - | - | - | - | 851.1 | 5.6 | - | - | - | - | - | - |
Domestic GLP consumption | 137.9 | 1.6 | 21.5 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 9.1 | 0.6 | 9.1 | 1.0 |
Air traffic | 24.2 | 0.3 | 36.0 | 0.1 | 5.4 | 0.0 | 4.3 | 0.3 | 0.3 | 0.0 | 0.3 | 0.0 |
Landfills | - | - | - | - | 32.4 | 0.2 | - | - | - | - | - | - |
Handcrafted production of bricks | 51.0 | 0.6 | 2465.4 | 4.0 | 534.2 | 3.5 | 4.1 | 0.2 | 353.4 | 24.6 | 349.3 | 38.5 |
Dust erosion | - | - | - | - | - | - | - | - | 96.8 | 6.7 | 9.7 | 1.1 |
Mining | - | - | - | - | - | - | - | - | 4.4 | 0.3 | 0.0 | 0.0 |
Total | 8402 | 100 | 61,398 | 100 | 15,310 | 100 | 1697 | 100 | 1439 | 100 | 907 | 100 |
Pollutant | Unit | Gasoline Vehicles | Diesel Vehicles | Total | |||
---|---|---|---|---|---|---|---|
Automobile | Pick-Up | Bus | Heavy | ||||
NOx | t y−1 | 1810.1 | 4.8 | 97.6 | 1861.2 | 2207.3 | 5981.0 |
% | 30.3 | 0.1 | 1.6 | 31.1 | 36.9 | 100.0 | |
CO | t y−1 | 52,429.8 | 12.0 | 340.5 | 2520.3 | 2980.8 | 58,283.4 |
% | 90.0 | 0.0 | 0.6 | 4.3 | 5.1 | 100.0 | |
NMVOC | t y−1 | 4417.2 | 3.9 | 97.5 | 693.4 | 853.6 | 6065.4 |
% | 72.8 | 0.1 | 1.6 | 11.4 | 14.1 | 100.0 | |
SO2 | t y−1 | 30.7 | 0.3 | 6.1 | 8.2 | 22.7 | 67.9 |
% | 45.2 | 0.4 | 8.9 | 12.1 | 33.4 | 100.0 | |
PM10 exhaust | t y−1 | 32.9 | 1.5 | 28.5 | 108.4 | 302.3 | 473.6 |
% | 6.9 | 0.3 | 6.0 | 22.9 | 63.8 | 100.0 | |
PM2.5 exhaust | t y−1 | 15.6 | 1.2 | 23.8 | 81.7 | 227.8 | 350.0 |
% | 4.4 | 0.3 | 6.8 | 23.3 | 65.1 | 100.0 | |
PM10 tire wear | t y−1 | 6.5 | 0.0 | 1.0 | 3.2 | 8.9 | 19.6 |
% | 33.4 | 0.2 | 4.9 | 16.2 | 45.4 | 100.0 | |
PM2.5 brake wear | t y−1 | 11.4 | 0.1 | 1.6 | 5.5 | 15.4 | 34.0 |
% | 33.5 | 0.2 | 4.7 | 16.2 | 45.4 | 100.0 | |
PM10 pavement | t y−1 | 13.7 | 0.1 | 2.0 | 4.6 | 12.9 | 33.3 |
% | 41.2 | 0.2 | 6.0 | 13.8 | 38.7 | 100.0 | |
PM10 resuspension | t y−1 | 189.1 | 1.0 | 20.5 | 16.6 | 46.5 | 273.7 |
% | 69.1 | 0.4 | 7.5 | 6.1 | 17.0 | 100.0 | |
PM10 Total | t y−1 | 242.3 | 2.6 | 52.0 | 132.8 | 370.6 | 800.2 |
% | 30.3 | 0.3 | 6.5 | 16.6 | 46.3 | 100.0 | |
PM2.5 Total | t y−1 | 26.9 | 1.2 | 25.4 | 87.2 | 243.3 | 384.0 |
% | 7.0 | 0.3 | 6.6 | 22.7 | 63.4 | 100.0 |
Component | Option | Scheme/Model |
---|---|---|
Microphysics | 4 | WRF Single–moment 5–class |
Planetary Boundary Layer | 1 | Yonsei University (YSU) |
Cumulus Parameterization | 5 | Grell 3D Ensemble |
Shortwave | 2 | Goddard |
Longwave | 1 | RRTM |
Land Surface | 2 | Unified Noah Land Surface |
Surface Layer | 1 | MM5 Similarity |
Component | Case or Reference | ||||
---|---|---|---|---|---|
This Assessment | Minet et al. (2020) [43] | Soret et al. (2014) [44] | Nogueira et al. (2019) [45] | Varga et al. (2019) [46] | |
Region | Cuenca, Ecuador | Toronto and Hamilton area, Canada | Barcelona and Madrid, Spain | São Paulo, Brazil | Cluj-Napoca, Romania |
Period | September 2014 | 20 to 26 March and 14 to 20 August 2016 | 3 to 5 October 2011 | ||
Approach | Emission changes and air quality modeling | Emission changes and air quality modeling | Emission changes and air quality modeling | Emission changes | Emission changes |
Models | WRF-Chem | WRF, Polair3D | WRF, CMAQ | ||
Spatial resolution | 1 km2 | 1 km2 | 1 km2 | ||
Approach | Online | Offline | Offline | ||
Main results reported | Decrease in NO2 (7.1 µg m−3) and PM2.5 (0.9 µg m−3) Increase in O3 (3.5 µg m−3) | Mean exposure decrease to NO2 (6% to 11%) and PM2.5 (9% to 13%) | Decrease in NO2 (35 µg m−3) and PM10 (8 µg m−3) Increase in O3 (4 µg m−3) | Decrease in NO emissions by a factor of four to five | Decrease in 6.4 t y−1 of NOx emissions |
Observation | Median values of short-term air quality changes. Based on the shift of 2304 diesel buses to electric buses | Mainly focused on NO2, PM2.5, and BC. Based on the elimination of the emissions of 250 to 1000 diesel trucks at the corridor level. | Based on three fleet electrification scenarios (13%, 26%, and 40%) by replacing conventional with electric vehicles | Renovation buses to Euro 5 and the incorporation of electric buses | Based on the shift of 41 Euro 3 diesel buses to electric buses |
Compared Periods | Maximum 8-h Mean CO | Maximum 1-h Mean NO2 | 24-h Mean PM2.5 | Maximum 8-h Mean O3 | |
---|---|---|---|---|---|
Probability p | |||||
01 January to 16 March | 17 March to 16 April | 0.004 | 1.9 × 10−9 | 0.516 | 0.004 |
01 January to 16 March | 17 March to 16 May | 7.1 × 10−4 | 3.5 × 10−18 | 8.7 × 10−4 | 0.824 |
Compared Periods | Maximum 8-h Mean CO | Maximum 1-h Mean NO2 | 24-h Mean PM2.5 | Maximum 8-h Mean O3 | Global Solar Radiation | |
---|---|---|---|---|---|---|
Probability P | ||||||
2019 | 2020 | 6.1 × 10−15 | 1.7 × 10−18 | 2.2 × 10−4 | 1.2 × 10−7 | 0.108 |
2018 | 2020 | 7.2 × 10−16 | 1.1 × 10−15 | 0.04 | 2.1 × 10−15 | 0.181 |
2017 | 2020 | 8.7 × 10−18 | 5.6 × 10−15 | 0.007 | 1.8 × 10−10 | 0.660 |
2016 | 2020 | 1.7 × 10−8 | 2.0 × 10−14 | 0.503 | 7.5 × 10−15 | |
2015 | 2020 | 8.7 × 10−18 | 2.7 × 10−9 | 3.1 × 10−5 | 8.6 × 10−15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, R.; Espinoza, C. Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador. Atmosphere 2020, 11, 998. https://doi.org/10.3390/atmos11090998
Parra R, Espinoza C. Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador. Atmosphere. 2020; 11(9):998. https://doi.org/10.3390/atmos11090998
Chicago/Turabian StyleParra, René, and Claudia Espinoza. 2020. "Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador" Atmosphere 11, no. 9: 998. https://doi.org/10.3390/atmos11090998
APA StyleParra, R., & Espinoza, C. (2020). Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador. Atmosphere, 11(9), 998. https://doi.org/10.3390/atmos11090998