Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A.
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NASA. Airborne Nitrogen Dioxide Plummets Over China. Available online: https://earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china (accessed on 7 May 2020).
- IQAir. COVID-19 Air Quality Report: COVID-19 Impact on Air Quality in 10 Major Cities; IQAir: Staad, Switzerland, 2020. [Google Scholar]
- Isaifan, R.J. The dramatic impact of Coronavirus outbreak on air quality: Has it saved as much as it has killed so far? Glob. J. Environ. Sci. Manag. 2020, 6, 275–288. [Google Scholar] [CrossRef]
- USEPA. Air Data: Air Quality Data Collected at Outdoor Monitors Across the US. Available online: https://aqs.epa.gov/api (accessed on 5 May 2019).
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef] [Green Version]
- NASA’s Scientific Visualization Studio. Reductions in Nitrogen Dioxide Associated with Decreased Fossil Fuel use Resulting from COVID-19 Mitigation. Available online: https://svs.gsfc.nasa.gov/4810 (accessed on 11 May 2020).
- Schiermeier, Q. Why pollution is plummeting in some cities—But not others. Nature 2020, 580, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACI. Cargo Traffic 2017 FINAL (Annual). Available online: https://aci.aero/data-centre/annual-traffic-data/cargo/2017-cargo-summary-annual-traffic-data/ (accessed on 7 May 2020).
- TDOT. Traffic Maps. Available online: https://www.tn.gov/content/dam/tn/tdot/maps/2019-traffic-maps-with-aadt/Shleby%20Combined.pdf (accessed on 7 May 2020).
- WMC. Memphis, Shelby County Municipalities Issue ‘Safer-at-home’ Orders to Curb the Spread of COVID-19. Available online: https://www.wmcactionnews5.com/2020/03/23/mayor-issues-safer-home-order-memphis/ (accessed on 8 May 2020).
- WMC. Memphis Mayor Extends Safer-at-home Order into May. Available online: https://www.wmcactionnews5.com/2020/04/21/memphis-mayor-extends-safer-at-home-order-into-may/ (accessed on 8 May 2020).
- U.S. Census Bureau. QuickFacts: Crittenden County, Arkansas; DeSoto County, Mississippi; Shelby County, Tennessee. Available online: https://www.census.gov/quickfacts/fact/table/crittendencountyarkansas,desotocountymississippi,shelbycountytennessee/PST045219 (accessed on 28 May 2020).
- TDEC. TN Annual Monitoring Network Plan; Tennessee Department of Environment and Conservation: Nashville, TN, USA, 2019.
- U.S. Government. 40 CFR Appendix A to Part 58—Quality Assurance Requirements for Monitors used in Evaluations of National Ambient Air Quality Standards; Office of the Federal Register National Archives and Records Administration: Washington, DC, USA, 2019.
- NOAA. Climate Data Online: Dataset Discovery. Available online: https://www.ncdc.noaa.gov/cdo-web/datasets (accessed on 8 May 2020).
- NOAA. Global Historical Climate Network Daily-Description. Available online: https://www.ncdc.noaa.gov/ghcn-daily-description (accessed on 29 May 2020).
- Leard, B.; Linn, J.; Munnings, C. Explaining the evolution of passenger vehicle miles traveled in the United States. Energy J. 2019, 40, 25–54. [Google Scholar] [CrossRef] [Green Version]
- de Foy, B.; Schauer, J.J. Changes in speciated PM2.5 concentrations in Fresno, California, due to NOx reductions and variations in diurnal emission profiles by day of week. Elem. Sci. Anthr. 2019, 7. [Google Scholar] [CrossRef]
- Ravi, V.; Gao, A.H.; Martinkus, N.B.; Wolcott, M.P.; Lamb, B.K. Air quality and health impacts of an aviation biofuel supply chain using forest residue in the Northwestern United States. Environ. Sci. Technol. 2018, 52, 4154–4162. [Google Scholar] [CrossRef] [PubMed]
- Christoforou, C.S.; Salmon, L.G.; Hannigan, M.P.; Solomon, P.A.; Cass, G.R. Trends in fine particle concentration and chemical composition in Southern California. J. Air Waste Manag. Assoc. 2000, 50, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- StreetLight Data. Daily County VMT. Available online: https://www.streetlightdata.com/VMT-monitor-by-county/#emergency-map-response (accessed on 8 May 2020).
- StreetLight Data. VMT Monitor—Methodology and Validation; StreetLight Data: San Francisco, CA, USA, 2020. [Google Scholar]
- Krudysz, M.A.; Froines, J.R.; Fine, P.M.; Sioutas, C. Intra-community spatial variation of size-fractionated PM mass, OC, EC, and trace elements in the Long Beach, CA area. Atmos. Environ. 2008, 42, 5374–5389. [Google Scholar] [CrossRef]
- Massoud, R.; Shihadeh, A.L.; Roumie, M.; Youness, M.; Gerard, J.; Saliba, N.; Zaarour, R.; Abboud, M.; Farah, W.; Saliba, N.A. Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city. Atmos. Res. 2011, 101, 893–901. [Google Scholar] [CrossRef]
- USEPA. National Ambient Air Quality Standards (40 CFR part 50). Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 8 May 2020).
- Strickland, J. Civil Emergency Proclamation and Executive Order Extending and Amending Safer at Home Directive and Closure of Non-Essential Services and Businesses (No. 10-2020); City of Memphis: Memphis, TN, USA, 2020.
- USEPA. 2017 National Emissions Inventory (NEI) Data. Available online: https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data (accessed on 31 May 2020).
- Doraiswamy, P.; Davis, W.T.; Miller, T.L.; Fu, J.S. Source apportionment of fine particles in Tennessee using a source-oriented model. J. Air Waste Manag. Assoc. 2007, 57, 407–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nopmongcol, U.; Alvarez, Y.; Jung, J.; Grant, J.; Kumar, N.; Yarwood, G. Source contributions to United States ozone and particulate matter over five decades from 1970 to 2020. Atmos. Environ. 2017, 167, 116–128. [Google Scholar] [CrossRef]
- USEPA. Our Nation’s Air 2019; U.S. Environmental Protection Agency: Washington, DC, USA, 2019.
- Xu, L.; Suresh, S.; Guo, H.; Weber, R.J.; Ng, N.L. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmos. Chem. Phys. 2015, 15, 7307–7336. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Russell, A.G.; Baumann, K. Source apportionment of fine particulate matter in the Southeastern United States. J. Air Waste Manag. Assoc. 2007, 57, 1123–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenovic, P.; Rozanov, E.; Anet, J.; Stenke, A.; Schmutz, W.; Peter, T. Implications of potential future grand solar minimum for ozone layer and climate. Atmos. Chem. Phys. 2018, 18, 3469–3483. [Google Scholar] [CrossRef] [Green Version]
- Egorova, T.; Rozanov, E.; Arsenovic, P.; Sukhodolov, T. Ozone Layer Evolution in the Early 20th Century. Atmosphere 2020, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H. Urban Air Pollution: State of the Science. Science 1989, 243, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem.-Sci. Anthrop. 2018, 6, 39. [Google Scholar] [CrossRef]
- Glanz, J.; Carey, B.; Holder, J.; Watkins, D.; Valentino-DeVries, J.; Rojas, R.; Leather, L. Where America Didn’t Stay Home Even as the Virus Spread. Available online: https://www.nytimes.com/interactive/2020/04/02/us/coronavirus-social-distancing.html (accessed on 12 May 2020).
- Shaver, K. “Quarantine Fatigue”: Researchers Find More Americans Venturing out against Coronavirus Stay-at-home Orders. Available online: https://www.washingtonpost.com/local/trafficandcommuting/quarantine-fatigue-researchers-find-more-americans-venturing-out-against-coronavirus-stay-at-home-orders/2020/04/25/fa1f01b2-84a3-11ea-a3eb-e9fc93160703_story.html (accessed on 13 May 2020).
- Woodall, G.M.; Smith, R.L. The Air Toxics Health Effects Database (ATHED). Toxicol. Appl. Pharmacol. 2008, 233, 20–24. [Google Scholar] [CrossRef] [PubMed]
Air Pollutant | PM2.5 (μg/m3) | NO2 (ppb) | Ozone (ppb) | ||||||
---|---|---|---|---|---|---|---|---|---|
Site | Ncore | Hernando | Marion | Marion | Ncore | Hernando | Marion | Frayser | Orgill |
Lockdown (25 March–4 May, 2020) | |||||||||
Mean (±SD) | 7.05 (±2.56) | 8.37 (±3.01) | 8.03 (±2.29) | 18.6 (±10.41) | 43.1 (±7.21) | 42.9 (±7.98) | 42.3 (±8.01) | 41.5 (±8.30) | 43.1 (±7.20) |
Baseline (25 March–4 May, 2017–2019) | |||||||||
Mean (±SD) | 7.08 (±2.37) | 7.57 (±3.06) | 7.65 (±2.57) | 16.5 (±9.37) | 44.6 (±8.33) | 44.8 (±8.80) | 44.7 (±8.52) | 43.0 (±8.75) | 45.2 (±8.77) |
Crude model | |||||||||
Lockdown (p-value) | −0.03 (0.94) | 0.80 (0.15) | 0.37 (0.41) | 2.05 (0.58) | −1.42 (0.33) | -1.83 (0.25) | −2.45 (0.11) | −1.49 (0.34) | −2.06 (0.18) |
Full model | |||||||||
Lockdown (p-value) | −0.12 (0.77) | 0.81 (0.13) | 0.56 (0.21) | 2.11 (0.51) | −1.71 (0.23) | −2.14 (0.16) | -3.06 (0.06) | −1.58 (0.30) | −2.10 (0.16) |
Temperature (p-value) | 0.14 (<0.0001) | 0.07 (0.01) | 0.08 (0.0004) | −0.10 (0.26) | 0.02 (0.78) | −0.29 (0.0004) | −0.01 (0.9) | −0.01 (0.89) | −0.02 (0.80) |
Wind speed (p-value) | −0.04 (0.55) | 0.02 (0.77) | 0.08 (0.14) | −1.18 (<0.0001) | −0.24 (0.23) | 0.04 (0.86) | −0.08 (0.67) | −0.02 (0.91) | 0.01 (0.96) |
Precipitation (p-value) | -0.40 (0.26) | −1.93 (<0.0001) | −1.11 (0.004) | −2.37 (0.09) | −4.50 (0.0004) | −4.11 (0.0036) | −2.83 (0.034) | −4.77 (0.0004) | −4.18 (0.002) |
Pearson Correlation Coefficient (R) | ||||
---|---|---|---|---|
Site | Ncore | Hernando | Marion | |
COD | Ncore | 0.77 | 0.82 | |
Hernando | 0.13 | 0.80 | ||
Marion | 0.10 | 0.11 |
Pearson Correlation Coefficient (R) | ||||||
---|---|---|---|---|---|---|
Site | Ncore | Hernando | Marion | Frayser | Orgill | |
COD | Ncore | 0.96 | 0.94 | 0.96 | 0.95 | |
Hernando | 0.04 | 0.90 | 0.92 | 0.90 | ||
Marion | 0.04 | 0.05 | 0.97 | 0.95 | ||
Frayser | 0.04 | 0.05 | 0.03 | 0.96 | ||
Orgill | 0.03 | 0.05 | 0.03 | 0.04 |
Air Pollutants | PM2.5 (μg/m3) | NO2 (ppb) | Ozone (ppb) | ||||||
---|---|---|---|---|---|---|---|---|---|
Site | Ncore | Hernando | Marion | Marion | Ncore | Hernando | Marion | Frayser | Orgill |
Lockdown (25 March–4 May, 2020) | |||||||||
Mean (±SD) | 7.05 (±2.56) | 8.37 (±3.01) | 8.03 (±2.29) | 18.6 (±10.41) | 43.1 (±7.21) | 42.9 (±7.98) | 42.3 (±8.01) | 41.5 (±8.30) | 43.1 (±7.20) |
Prior month (25 February–24 March, 2020) | |||||||||
Mean (±SD) | 5.75 (±1.96) | 6.94 (±2.05) | 6.70 (±1.77) | 18.7 (±10.9) | 33.2 (±8.56) | 31.6 (±9.19) | 31.2 (±8.95) | 31.8 (±9.07) | 33.3 (±10.1) |
Crude model | |||||||||
Lockdown (p-value) | 1.30 (0.03) | 1.42 (0.03) | 1.30 (0.01) | −0.08 (0.99) | 9.97 (<0.0001) | 11.3 (<0.0001) | 11.1 (<0.0001) | 9.67 (<0.0001) | 9.78 (<0.0001) |
Full model | |||||||||
Lockdown (p-value) | −0.03 (0.95) | 0.23 (0.75) | 0.52 (0.39) | 0.92 (0.85) | 11.6 (<0.0001) | 14.2 (<0.0001) | 13.2 (<0.0001) | 11.9 (<0.0001) | 11.3 (<0.0001) |
Temperature (p-value) | 0.17 (<0.0001) | 0.13 (0.006) | 0.10 (0.008) | −0.06 (0.79) | −0.21 (0.12) | −0.42 (0.02) | −0.31 (0.03) | −0.30 (0.06) | −0.18 (0.24) |
Wind speed (p-value) | −0.11 (0.24) | −0.16 (0.17) | 0.03 (0.71) | −1.57 (0.005) | 0.45 (0.19) | 0.74 (0.07) | 0.57 (0.11) | 0.78 (0.04) | 0.55 (0.15) |
Precipitation (p-value) | −0.16 (0.79) | −1.29 (0.07) | −0.73 (0.25) | −1.35 (0.76) | −5.48 (0.02) | −2.43 (0.30) | −3.77 (0.14) | −6.55 (0.009) | −4.67 (0.06) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Fu, X.; Bartelli, D.; Smith, L. Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A. Atmosphere 2020, 11, 630. https://doi.org/10.3390/atmos11060630
Jia C, Fu X, Bartelli D, Smith L. Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A. Atmosphere. 2020; 11(6):630. https://doi.org/10.3390/atmos11060630
Chicago/Turabian StyleJia, Chunrong, Xianqiang Fu, Debra Bartelli, and Larry Smith. 2020. "Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A." Atmosphere 11, no. 6: 630. https://doi.org/10.3390/atmos11060630
APA StyleJia, C., Fu, X., Bartelli, D., & Smith, L. (2020). Insignificant Impact of the “Stay-At-Home” Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A. Atmosphere, 11(6), 630. https://doi.org/10.3390/atmos11060630