An Assessment of Observed and Simulated Temperature Variability in Sierra de Guadarrama
Abstract
:1. Introduction
2. Data
2.1. WRF Model Simulations
2.2. ERA Interim Reanalysis Data
2.3. Observations
3. Methodology
4. Results
4.1. Model-Observations Comparison
4.2. Temperature-Trend Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hidrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.G. Past and potential future changes in mountain environments: A review. In Mountain Environments in Changing Climates; Beniston, M., Ed.; Routledge Taylor & Francis Group: Milton Park, Abingdon, Oxfordshire, UK, 2002; pp. 2–25. [Google Scholar]
- Spehn, E.; Koerner, C. Biodiversity in Mountains: A Natural Heritage Threatened by Climate Change. In Mountains and Climate Change: From Understanding to Action; Kohler, T., Maselli, D., Eds.; Swiss Agency for Development and Cooperation SDC: Bern, Switzerland, 2009; pp. 42–47. [Google Scholar]
- Beniston, M. Mountain Climates and Climatic Change: An Overview of Processes Focusing on the European Alps. Pure Appl. Geophys. 2005, 162, 1587–1606. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.G. Mountain Weather and Climate; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Shafer, S.L.; Bartlein, P.J.; Whitlock, C. Understanding the Spatial Heterogeneity of Global Environmental Change in Mountain Regions. In Global Change and Mountain Regions. An Overview of Current Knowledge; Huber, U.M., Bugmann, H.K.M., Reasoner, M.A., Eds.; Springer: New York, NY, USA, 2006; pp. 21–30. [Google Scholar]
- Kohler, T.; Wehrli, A.; Jurek, M. Mountains and Climate Change. A Global Concern; Centre for the Development and Environment (CDE), Swiss Agency for Development and Cooperation (SDC) and Geographica Bernensia: Bern, Switzerland, 2014. [Google Scholar]
- Giorgi, F.; Hurrel, J.W.; Marinucci, M.R. Elevation Dependency of the Surface Climate Change Signal: A model study. J. Clim. 1996, 10, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.M.; Blitz, C.M. Polar Amplification of Climate Change in Coupled Models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Díaz, H.F.; Bradley, R.S. Temperature Variations during the Last Century at High Elevation Sites. In Climatic Change at High Elevation Sites; Díaz, H.F., Beniston, M., Bradley, R.S., Eds.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Ceppi, P.; Scherrer, S.C.; Fischer, A.M.; Appenzeller, C. Revisiting Swiss Temperatures trends 1959–2008. Int. J. Climatol. 2010, 32, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Klemes, V. The Modelling of Mountain Hydrology: The Ultimate Challenge. Int. Assoc. Hydr. Sci. (IAHS) 1990, 190, 29–43. [Google Scholar]
- Lucio-Eceiza, E.E.; González-Rouco, J.F.; García-Bustamante, E.; Navarro, J.; Beltrami, H. Multidecadal to Centennial Surface Wintertime Wind Variability over Northeastern North-America via Statistical Downscaling. Clim. Dyn. 2019, 53, 41–66. [Google Scholar] [CrossRef]
- Zorita, E.; Von Storch, H. The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods. J. Clim. 1999, 12, 2474–2489. [Google Scholar] [CrossRef]
- González-Rouco, J.F.; Heyen, H.; Zorita, E.; Valero, F. Agreement between Observed Rainfall Trends and Climate Change Simulations in the Southwest of Europe. J. Clim. 2000, 13, 3057–3065. [Google Scholar] [CrossRef] [Green Version]
- Rummukainen, M. State-of-the-art with Regional Climate Models. WIREs Clim. Chang. 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; Technical Report TN-468+STR; NCAR: Boulder, CO, USA, 2005. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report in the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Portner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Pèan, C., Pidcock, R., Eds.; IPCC: Geneva, Switzerland, 2018; in press. [Google Scholar]
- González-Hidalgo, J.C.; Peña-Angulo, D.; Brunetti, M.; Cortesi, N. Recent Trend in Temperature Evolution in Spanish mainland (1951–2010): From Warming to Hiatus. Int. J. Climatol. 2016, 36, 2405–2416. [Google Scholar] [CrossRef]
- Brunet, M.; Jones, P.D.; Sigró, J.; Saladié, O.; Aguilar, E.; Moberg, A.; Della-Marta, P.M.; Lister, D.; Walther, A.; López, D. Temporal and Spatial Temperature Variability and Change over Spain during 1850–2005. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Cuchiara, G.C.; Rappengluck, B. Performace Analysis of WRF and LES in Describing the Evolution and Structure of the Planetary Boundary Layer. Environ. Fluid Mech. 2018, 18, 1257–1273. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayasi, S.; Uppala, S.; Simmons, A. The ERA-Interim archive Version 2.0; ECMWF ERA Rep. Ser. 1: Reading, UK, 2011. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmospher. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. Convective Parameterization for Mesoscale Models: The Kain-Fritsch Scheme. In The Representation of Cumulus Convection in Numerical Models; Emanuel, K.A., Raymond, D.J., Eds.; Am. Meteorol. Soc.: Boston, MA, USA, 1993; pp. 165–170. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in Cloud Model. J. Appl. Meteor. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land-Surface/Hydrology Model with the Penn State/NCAR MM5 Modelling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Monin, A.S.; Obukhov, A. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, 163–187. (In Russian) [Google Scholar]
- Carlson, T.N.; Boland, F.E. Analysis of Urban-Rural Canopy using a Surface Heat Flux/Temperature Model. J. Appl. Meteor. 1978, 17, 998–1013. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geol. Surv. Prof. Paper 964 (US Government Printing Office): Washington, DC, USA, 1976.
- Bliss, N.B.; Olsen, L.M. Development of a 30-arc-second Digital Elevation Model of South America. In Proceedings of the Pecora Thirteen, Human Interactions with the Environment-Perspectives from Space, Sioux Falls, SD, USA, 20–22 August 1996. [Google Scholar]
- Gesch, D.B.; Larson, K.S. Techniques for Development of Global 1-Kilometer Digital Elevation Models. In Proceedings of the Pecora Thirteen, Human Interactions with the Environment-Perspectives from Space, Sioux Falls, SD, USA, 20–22 August 1996. [Google Scholar]
- Verdin, K.L.; Greenlee, S.K. Development of Continental Scale Digital Elevation Models and Extraction of Hydrographic Features. In Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM, USA, 21–26 January 1996. [Google Scholar]
- Jiménez, P.A.; González-Rouco, J.F.; Bustamante, E.G.; Navarro, J.; Montávez, J.P.; de Arellano, J.V.G.; Dudhia, J.; Roldán, A. Surface Wind Regionalization Over Complex Terrain: Evaluation and Analysis of a High Resolution WRF Simulation. J. Appl. Meteorol. 2010, 49, 268–287. [Google Scholar] [CrossRef] [Green Version]
- Universidad Complutense de Madrid (UCM). GuMNet—Guadarrama Monitoring Network. Available online: https://www.ucm.es/gumnet (accessed on 10 September 2020).
- Lucio-Eceiza, E.E.; González-Rouco, J.F.; Navarro, J.; Beltrami, H. Quality Control of Surface Wind Observations in Northeastern North America. Part I: Data Management Issues. J. Atmos. Oceanic Technol. 2018, 35, 163–182. [Google Scholar] [CrossRef]
- Lucio-Eceiza, E.E.; González-Rouco, J.F.; Navarro, J.; Beltrami, H.; Conte, J. Quality Control of Surface Wind Observations in Northeastern North America. Part II: Measurement Errors. J. Atmos. Oceanic Technol. 2018, 35, 183–205. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Osborn, T.J.; Briffa, K.R.; Jones, P.D. Adjusting Variance for Sample-size in Tree-ring Chronologies and Other Regional Mean Timeseries. Dendrochronology 1997, 15, 89–99. [Google Scholar]
- Jiménez, P.A.; González-Rouco, J.F.; Montávez, J.P.; Navarro, J.; García-Bustamante, E.; Dudhia, J. Analysis of the long-term Surface Wind Variability over Complex Terrain using a High Spatial Resolution WRF Simulation. Clim. Dyn. 2013, 40, 1634–1656. [Google Scholar] [CrossRef]
- Xoplaki, E.; González-Rouco, J.F.; Luterbacher, J.; Wanner, H. Mediterranean Summer Air Temperature Variability and its Connection to the Large-Scale Atmospheric Circulation and SSTs. Clim. Dyn. 2003, 20, 723–739. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kaskaoutis, D.G.; Kalliampakos, G.K.; Rashki, A.; Wild, M. The Solar Dimming/Brightening Effect over the Mediterranean Basin in the period 1979–2012. J. Atmos. Solar-Terrestr. Phys. 2016, 150, 31–46. [Google Scholar] [CrossRef]
Observations | ||||||||
---|---|---|---|---|---|---|---|---|
Name | Code | Source | Longitude (°) | Latitude (°) | Altitude (masl) | Start Date | Finish Date | WRF Domain |
Madrid Torrejón | MTJ | AEMet | −3.444 | 40.489 | 607 | 1 January 1961 | 1 November 2018 | D3 |
Madrid Barajas | MBJ | AEMet | −3.556 | 40.467 | 609 | 1 January 1961 | 1 November 2018 | D3 |
Madrid Getafe | MGF | AEMet | −3.722 | 40.299 | 620 | 1 January 1951 | 31 October 2018 | D3 |
Talamanca del Jarama | TLJ | AEMet | −3.517 | 40.745 | 654 | 1 January 1970 | 30 September 2018 | D4 |
Madrid Retiro | MRT | AEMet | −3.678 | 40.412 | 667 | 1 March 1893 | 31 October 2018 | D3 |
Madrid Cuatro Vientos | MCV | AEMet | −3.786 | 40.376 | 690 | 1 May 1945 | 1 November 2018 | D3 |
Herrería | HRR | GuMNet | −4.136 | 40.582 | 920 | 7 June 2016 | 31 August 2018 | D4 |
Colmenar Viejo | CLV | AEMet | −3.765 | 40.696 | 1004 | 1 January 1985 | 1 November 2018 | D4 |
Segovia | SGV | AEMet | −4.126 | 40.945 | 1005 | 1 January 1988 | 1 November 2018 | D4 |
Alameda | ALM | GuMNet | −3.844 | 40.915 | 1115 | 2 October 2009 | 31 August 2018 | D4 |
Ontalva | ONT | PNP | −3.893 | 40.872 | 1188 | 22 February 2008 | 19 September 2014 | D4 |
San Rafael | SRF | AEMet | −4.212 | 40.719 | 1237 | 1 January 1987 | 31 October 2018 | D4 |
Cabeza Mediana | CBM | GuMNet | −3.908 | 40.844 | 1682 | 2 October 2009 | 31 August 2018 | D4 |
Raso del Pino I | RPI | GuMNet | −3.969 | 40.874 | 1803 | 26 July 2014 | 31 August 2018 | D4 |
Cotos | CTS | GuMNet | −3.961 | 40.825 | 1873 | 1 January 2005 | 31 August 2018 | D4 |
Navacerrada | NVC | AEMet | −4.011 | 40.793 | 1894 | 1 January 1946 | 1 November 2018 | D4 |
Hoyas | HYS | GuMNet | −3.955 | 40.834 | 2019 | 30 October 2014 | 31 August 2018 | D4 |
Zabala | ZBL | GuMNet | −3.958 | 40.837 | 2075 | 1 January 2000 | 31 August 2018 | D4 |
Dos Hermanas | DHS | GuMNet | −3.964 | 40.837 | 2225 | 9 October 2014 | 23 January 2018 | D4 |
cWRF | cERAIT | |||||||
---|---|---|---|---|---|---|---|---|
Name | Code | Long (°) | Lat (°) | Altitude (masl) | Code | Long (°) | Lat (°) | Altitude (masl) |
Madrid Torrejón | MTJ | −3.439 | 40.478 | 585 | ERAIT1 | −3.750 | 40.500 | 855 |
Madrid Barajas | MBJ | −3.548 | 40.476 | 584 | ERAIT1 | −3.750 | 40.500 | 855 |
Madrid Getafe | MGF | −3.727 | 40.306 | 603 | ERAIT1 | −3.750 | 40.500 | 855 |
Talamanca del Jarama | TLJ | −3.518 | 40.746 | 643 | ERAIT1 | −3.750 | 40.500 | 855 |
Madrid Retiro | MRT | −3.693 | 40.418 | 639 | ERAIT1 | −3.750 | 40.500 | 855 |
Madrid Cuatro Vientos | MCV | −3.802 | 40.389 | 674 | ERAIT1 | −3.750 | 40.500 | 855 |
Herrería | HRR | −4.138 | 40.586 | 993 | ERAIT3 | −4.500 | 40.500 | 856 |
Colmenar Viejo | CLV | −3.762 | 40.695 | 944 | ERAIT1 | −3.750 | 40.500 | 855 |
Segovia | SGV | −4.126 | 40.949 | 974 | ERAIT4 | −4.500 | 41.250 | 902 |
Alameda | ALM | −3.842 | 40.917 | 1084 | ERAIT2 | −3.750 | 41.250 | 997 |
Ontalva | ONT | −3.890 | 40.870 | 1186 | ERAIT1 | −3.750 | 40.500 | 855 |
San Rafael | SRF | −4.216 | 40.715 | 1285 | ERAIT3 | −4.500 | 40.500 | 856 |
Cabeza Mediana | CBM | −3.914 | 40.841 | 1487 | ERAIT1 | −3.750 | 40.500 | 855 |
Raso del Pino I | RPI | −3.964 | 40.878 | 1918 | ERAIT1 | −3.750 | 40.500 | 855 |
Cotos | CTS | −3.962 | 40.822 | 1788 | ERAIT1 | −3.750 | 40.500 | 855 |
Navacerrada | NVC | −4.010 | 40.793 | 1781 | ERAIT1 | −3.750 | 40.500 | 855 |
Hoyas | HYS | −3.950 | 40.831 | 1710 | ERAIT1 | −3.750 | 40.500 | 855 |
Zabala | ZBL | −3.963 | 40.840 | 2092 | ERAIT1 | −3.750 | 40.500 | 855 |
Dos Hermanas | DHS | −3.963 | 40.840 | 2092 | ERAIT1 | −3.750 | 40.500 | 855 |
MONTHLY ANOMALIES TRENDS (°C/decade) | ||||||
---|---|---|---|---|---|---|
Name | Total Period | 1950–2018 | 1970–2018 | 1990–2018 | 2000–2018 | |
WRF D3 average | Annual | 0.25 ± 0.31 | - | - | - | - |
Spring | −0.02 ± 0.65 | - | - | - | - | |
Summer | 0.29 ± 0.62 | - | - | - | - | |
Autumn | ** 0.76 ± 0.61 | - | - | - | - | |
Winter | 0.05 ± 0.64 | - | - | - | - | |
WRF D4 average | Annual | 0.27 ± 0.32 | - | - | - | - |
Spring | −0.02 ± 0.69 | - | - | - | - | |
Summer | 0.32 ± 0.65 | - | - | - | - | |
Autumn | ** 0.81 ± 0.61 | - | - | - | - | |
Winter | 0.03 ± 0.65 | - | - | - | - | |
Segovia | Annual | * 0.21 ± 0.20 | - | - | ** 0.28 ± 0.21 | 0.26 ± 0.37 |
Spring | 0.18 ± 0.41 | - | - | 0.20 ± 0.42 | 0.04 ± 0.79 | |
Summer | 0.29 ± 0.36 | - | - | 0.34 ± 0.38 | 0.25 ± 0.70 | |
Autumn | ** 0.51 ± 0.41 | - | - | ** 0.72 ± 0.43 | ** 0.90 ± 0.68 | |
Winter | −0.14 ± 0.40 | - | - | −0.10 ± 0.41 | −0.12 ± 0.82 | |
San Rafael | Annual | * 0.35 ± 0.18 | - | - | * 0.38 ± 0.21 | 0.18 ± 0.35 |
Spring | * 0.42 ± 0.40 | - | - | * 0.47 ± 0.46 | −0.03 ± 0.71 | |
Summer | * 0.71 ± 0.33 | - | - | * 0.51 ± 0.36 | 0.37 ± 0.65 | |
Autumn | 0.35 ± 0.36 | - | - | * 0.59 ± 0.40 | 0.56 ± 0.65 | |
Winter | −0.10 ± 0.36 | - | - | −0.02 ± 0.41 | −0.18 ± 0.81 | |
Colmenar Viejo | Annual | * 0.16 ± 0.15 | - | - | * 0.22 ± 0.19 | ** 0.48 ± 0.33 |
Spring | 0.10 ± 0.35 | - | - | −0.02 ± 0.42 | 0.19 ± 0.77 | |
Summer | 0.20 ± 0.29 | - | - | 0.27 ± 0.35 | 0.44 ± 0.64 | |
Autumn | 0.30 ± 0.33 | - | - | ** 0.71 ± 0.37 | ** 1.13 ± 0.58 | |
Winter | 0.05 ± 0.27 | - | - | −0.03 ± 0.33 | 0.17 ± 0.65 | |
Talamanca del Jarama | Annual | * 0.31 ± 0.08 | - | * 0.31 ± 0.08 | * 0.25 ± 0.17 | * 0.49 ± 0.30 |
Spring | * 0.49 ± 0.18 | - | * 0.49 ± 0.18 | 0.09 ± 0.36 | 0.27 ± 0.71 | |
Summer | ** 0.39 ± 0.16 | - | ** 0.39 ± 0.16 | 0.24 ± 0.32 | 0.44 ± 0.60 | |
Autumn | * 0.25 ± 0.17 | - | * 0.25 ± 0.17 | ** 0.63 ± 0.33 | ** 1.00 ± 0.54 | |
Winter | 0.13 ± 0.15 | - | 0.13 ± 0.15 | 0.07 ± 0.31 | 0.28 ± 0.57 | |
Madrid Torrejón | Annual | * 0.28 ± 0.07 | - | * 0.36 ± 0.08 | 0.17 ± 0.17 | 0.05 ± 0.31 |
Spring | * 0.30 ± 0.14 | - | * 0.46 ± 0.17 | −0.06 ± 0.36 | −0.25 ± 0.69 | |
Summer | ** 0.46 ± 0.12 | - | ** 0.60 ± 0.16 | 0.28 ± 0.34 | 0.09 ± 0.64 | |
Autumn | * 0.25 ± 0.13 | - | ** 0.30 ± 0.17 | ** 0.58 ± 0.34 | 0.55 ± 0.56 | |
Winter | 0.10 ± 0.12 | - | 0.06 ± 0.15 | −0.09 ± 0.32 | −0.16 ± 0.60 | |
Madrid Barajas | Annual | ** 0.29 ± 0.06 | - | ** 0.40 ± 0.08 | ** 0.38 ± 0.17 | ** 0.77 ± 0.30 |
Spring | ** 0.31 ± 0.13 | - | ** 0.53 ± 0.17 | 0.26 ± 0.35 | 0.60 ± 0.69 | |
Summer | ** 0.49 ± 0.12 | - | ** 0.64 ± 0.15 | ** 0.52 ± 0.32 | ** 0.84 ± 0.60 | |
Autumn | ** 0.26 ± 0.13 | - | ** 0.32 ± 0.16 | ** 0.65 ± 0.34 | ** 1.12 ± 0.56 | |
Winter | 0.11 ± 0.12 | - | 0.10 ± 0.15 | 0.12 ± 0.32 | 0.52 ± 0.58 | |
Madrid Getafe | Annual | ** 0.33 ± 0.05 | ** 0.33 ± 0.05 | ** 0.48 ± 0.08 | ** 0.56 ± 0.17 | ** 0.59 ± 0.30 |
Spring | ** 0.33 ± 0.11 | ** 0.33 ± 0.11 | ** 0.63 ± 0.18 | * 0.39 ± 0.38 | 0.31 ± 0.71 | |
Summer | ** 0.49 ± 0.09 | ** 0.49 ± 0.09 | ** 0.72 ± 0.15 | ** 0.68 ± 0.34 | ** 0.67 ± 0.62 | |
Autumn | ** 0.30 ± 0.11 | ** 0.30 ± 0.11 | ** 0.40 ± 0.17 | ** 0.94 ± 0.34 | ** 1.10 ± 0.54 | |
Winter | ** 0.22 ± 0.09 | ** 0.22 ± 0.09 | ** 0.18 ± 0.14 | 0.24 ± 0.30 | 0.28 ± 0.58 | |
Navacerrada | Annual | ** 0.21 ± 0.06 | ** 0.29 ± 0.07 | ** 0.47 ± 0.11 | ** 0.36 ± 0.23 | * 0.44 ± 0.40 |
Spring | * 0.21 ± 0.14 | ** 0.28 ± 0.15 | ** 0.71 ± 0.24 | 0.23 ± 0.51 | 0.18 ± 0.92 | |
Summer | ** 0.32 ± 0.10 | ** 0.41 ± 0.11 | ** 0.70 ± 0.19 | ** 0.47 ± 0.39 | 0.47 ± 0.70 | |
Autumn | ** 0.17 ± 0.13 | ** 0.25 ± 0.14 | ** 0.31 ± 0.23 | ** 0.86 ± 0.47 | ** 1.16 ± 0.75 | |
Winter | ** 0.17 ± 0.12 | ** 0.24 ± 0.12 | 0.18 ± 0.20 | −0.09 ± 0.45 | −0.04 ± 0.87 | |
Madrid Cuatro Vientos | Annual | ** 0.29 ± 0.05 | ** 0.34 ± 0.05 | ** 0.49 ± 0.09 | ** 0.36 ± 0.18 | ** 0.39 ± 0.31 |
Spring | ** 0.29 ± 0.10 | ** 0.32 ± 0.11 | ** 0.61 ± 0.19 | 0.17 ± 0.39 | 0.14 ± 0.73 | |
Summer | ** 0.40 ± 0.09 | ** 0.47 ± 0.10 | ** 0.71 ± 0.16 | ** 0.52 ± 0.35 | 0.40 ± 0.65 | |
Autumn | ** 0.26 ± 0.10 | ** 0.33 ± 0.11 | ** 0.42 ± 0.18 | ** 0.74 ± 0.35 | ** 0.89 ± 0.55 | |
Winter | ** 0.23 ± 0.08 | ** 0.25 ± 0.09 | ** 0.21 ± 0.14 | 0.02 ± 0.31 | 0.13 ± 0.60 | |
Madrid Retiro | Annual | * 0.19 ± 0.02 | ** 0.32 ± 0.05 | ** 0.44 ± 0.09 | ** 0.39 ± 0.18 | ** 0.61 ± 0.31 |
Spring | * 0.17 ± 0.04 | ** 0.27 ± 0.11 | ** 0.55 ± 0.18 | 0.20 ± 0.38 | 0.29 ± 0.73 | |
Summer | ** 0.23 ± 0.04 | ** 0.52 ± 0.09 | ** 0.76 ± 0.16 | ** 0.56 ± 0.36 | ** 0.94 ± 0.65 | |
Autumn | * 0.19 ± 0.04 | ** 0.29 ± 0.10 | ** 0.34 ± 0.17 | ** 0.76 ± 0.34 | ** 1.07 ± 0.53 | |
Winter | ** 0.18 ± 0.04 | ** 0.21 ± 0.09 | 0.11 ± 0.13 | 0.05 ± 0.30 | 0.11 ± 0.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vegas-Cañas, C.; González-Rouco, J.F.; Navarro-Montesinos, J.; García-Bustamante, E.; Lucio-Eceiza, E.E.; García-Pereira, F.; Rodríguez-Camino, E.; Chazarra-Bernabé, A.; Álvarez-Arévalo, I. An Assessment of Observed and Simulated Temperature Variability in Sierra de Guadarrama. Atmosphere 2020, 11, 985. https://doi.org/10.3390/atmos11090985
Vegas-Cañas C, González-Rouco JF, Navarro-Montesinos J, García-Bustamante E, Lucio-Eceiza EE, García-Pereira F, Rodríguez-Camino E, Chazarra-Bernabé A, Álvarez-Arévalo I. An Assessment of Observed and Simulated Temperature Variability in Sierra de Guadarrama. Atmosphere. 2020; 11(9):985. https://doi.org/10.3390/atmos11090985
Chicago/Turabian StyleVegas-Cañas, Cristina, J. Fidel González-Rouco, Jorge Navarro-Montesinos, Elena García-Bustamante, Etor E. Lucio-Eceiza, Félix García-Pereira, Ernesto Rodríguez-Camino, Andrés Chazarra-Bernabé, and Inés Álvarez-Arévalo. 2020. "An Assessment of Observed and Simulated Temperature Variability in Sierra de Guadarrama" Atmosphere 11, no. 9: 985. https://doi.org/10.3390/atmos11090985
APA StyleVegas-Cañas, C., González-Rouco, J. F., Navarro-Montesinos, J., García-Bustamante, E., Lucio-Eceiza, E. E., García-Pereira, F., Rodríguez-Camino, E., Chazarra-Bernabé, A., & Álvarez-Arévalo, I. (2020). An Assessment of Observed and Simulated Temperature Variability in Sierra de Guadarrama. Atmosphere, 11(9), 985. https://doi.org/10.3390/atmos11090985