Climate Perspectives in the Intra–Americas Seas
Abstract
:1. Introduction
2. Large–Scale Climate Forcing
2.1. Pressure Patterns
2.2. Large–Scale Circulation
2.3. ITCZ
3. Regional Climate Features
3.1. WHWP
3.2. Low–Level Circulation
3.2.1. CLLJ
3.2.2. Choco Jet
3.3. Moisture Transport
3.4. Rainfall
3.4.1. Rainfall Distribution and the MSD
3.4.2. Tropical Cyclones
3.4.3. Mesoscale Convective Activity
4. Climate Variability
4.1. High–Frequency Variability
4.2. Interannual Variability
4.3. Decadal and Multi–Decadal Variability
5. Climate Change in the Regional Context
5.1. Past Climatic Changes
5.2. The Anthropocene
5.2.1. Observed Climate Change
5.2.2. Future Climate Scenarios
5.2.3. Projected Impacts of Climate Change
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Ding, Q. Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett. 2006, 33, 06711. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, J.; Cane, M.A.; Liu, J.; Webster, P.J.; Xiang, B.; Kim, H.-M.; Cao, J.; Ha, K.-J. Toward Predicting Changes in the Land Monsoon Rainfall a Decade in Advance. J. Clim. 2018, 31, 2699–2714. [Google Scholar] [CrossRef]
- Higgins, R.W.; Gochis, D. Synthesis of Results from the North American Monsoon Experiment (NAME) Process Study. J. Clim. 2007, 20, 1601–1607. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, F.; Miguez–Macho, G.; Hu, H. WRF with Water Vapor Tracers: A Study of Moisture Sources for the North American Monsoon. J. Hydrometeorol. 2016, 17, 1915–1927. [Google Scholar] [CrossRef]
- Ramage, C.S. Monsoon Meteorology; International Geo–Physics Series; Academic Press: Cambridge, MA, USA, 1971; Volume 15. [Google Scholar]
- Wang, B.; Jin, C.; Liu, J. Understanding Future Change of Global Monsoons Projected by CMIP6 Models. J. Clim. 2020, 33, 6471–6489. [Google Scholar] [CrossRef]
- Amador, J.A.; Rivera, E.R.; Durán–Quesada, A.M.; Mora, G.; Sáenz, F.; Calderon, B. The easternmost tropical Pacific. Part I: A climate review. Rev. De Biol. Trop. 2016, 64, 1. [Google Scholar] [CrossRef] [Green Version]
- Misra, V.; Mishra, A.; Li, H. The sensitivity of the regional coupled ocean–atmosphere simulations over the Intra–Americas seas to the prescribed bathymetry. Dyn. Atmos. Ocean. 2016, 76, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Enfield, D. The Tropical Western Hemisphere Warm Pool. Geophys. Res. Lett. 2001, 28, 1635–1638. [Google Scholar] [CrossRef]
- Chang, Y.L.; Oey, L.Y. Coupled response of the trade wind, SST gradient, and SST in the Caribbean Sea, and the potential impact on Loop Current’s interannual variability. J. Phys. Oceanogr. 2013, 43, 1325–1344. [Google Scholar] [CrossRef]
- Amador, J.A. The intra-Americas sea low-level jet: Overview and future research. Ann. N. Y. Acad. Sci. 2008, 1146, 153–188. [Google Scholar] [CrossRef] [Green Version]
- Poveda, G.; MesaiD, O.J. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean–land–atmosphere interaction by a low–level jet. Geophys. Res. Lett. 2000, 27, 1675–1678. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.H.; Vizy, E.K. Hydrodynamics of the Caribbean Low–Level Jet and Its Relationship to Precipitation. J. Clim. 2010, 23, 1477–1494. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Durán-Quesada, A.M.; Amador, J.A.; Alfaro, E.J. The caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the intra-americas sea: A proposed dynamical mechanism. Geogr. Ann. Ser. Aphys. Geogr. 2015, 97, 41–59. [Google Scholar] [CrossRef]
- Sierra, J.; Arias, P.A.; Vieria–Agudelo, S.C.; Agudelo, J. How well do CMIP5 models simulate the low–level jet in western Colombia? Clim. Dyn. 2017, 51, 2247–2265. [Google Scholar] [CrossRef]
- Magaña, V.; Amador, J.A.; Medina, S. The Midsummer Drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Janowiak, J.E.; Arkin, P.A.; Xie, P.; Morrissey, M.L.; LeGates, D.R. An Examination of the East Pacific ITCZ Rainfall Distribution. J. Clim. 1995, 8, 2810–2823. [Google Scholar] [CrossRef] [Green Version]
- Franco–Díaz, A.; Klingaman, N.P.; Vidale, P.L.; Guo, L.; Demory, M.-E. The contribution of tropical cyclones to the atmospheric branch of Middle America’s hydrological cycle using observed and reanalysis tracks. Clim. Dyn. 2019, 53, 6145–6158. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, C.; Done, J.M.; Bruyère, C.L. Easterly wave contributions to seasonal rainfall over the tropical Americas in observations and a regional climate model. Clim. Dyn. 2019, 54, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.A.T.; Rossow, W.B.; Guedes, R.L.; Walker, A.W. Life Cycle Variations of Mesoscale Convective Systems over the Americas. Mon. Weather. Rev. 1998, 126, 1630–1654. [Google Scholar] [CrossRef]
- Grabowski, R. Political legitimacy and economic development: The role of agriculture in Costa Rica. Prog. Dev. Stud. 2016, 16, 361–366. [Google Scholar] [CrossRef]
- Peguero, F.; Zapata, S.; Sandoval, L. Agricultural Production of Central America and the Caribbean: Challenges and Opportunities. Agric. Appl. Econ. Assoc. 2019, 34. [Google Scholar] [CrossRef]
- Loyola, C.E.; Dole, J.M.; Dunning, R. South and Central America Cut Flower Production and Postharvest Survey. HortTechnology 2019, 29, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Smith, K. Conservation and Caffeine: The History of Coffee Tourism and Sustainability in Costa Rica. Undergraduate Thesis, Southern Illinois University, Carbondale, IL, USA, 2019. [Google Scholar]
- Dooley, K.; Dobbins, C.; Edgar, L.; Borges, B.; Jones, S.; Hernandez, J.; Birnbaum, A. A cross case synthesis of the social and economic development of three Guatemalan coffee cooperatives. Adv. Agric. Dev. 2020, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rojas–Romagosa, H.; Guevara, P. Economic Impact for Central America, Panama and the Dominican Republic (CAPDR) of Changes in US Trade Policy, Increased Regional Integration and New Trade Agreements; GTAP: West Lafayette, IN, USA, 2017. [Google Scholar]
- Chen, C.-F.; Son, N.-T.; Chen, C.-R.; Chiang, S.; Chang, L.; Valdez, M.C. Drought monitoring in cultivated areas of Central America using multi–temporal MODIS data. Geomat. Nat. Hazards Risk 2016, 8, 402–417. [Google Scholar] [CrossRef] [Green Version]
- Ayala, J.H.; Heslar, M. Examining the spatiotemporal characteristics of droughts in the Caribbean using the standardized precipitation index (SPI). Clim. Res. 2019, 78, 103–116. [Google Scholar] [CrossRef]
- Avelino, J.; Cristancho, M.A.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Laderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Bacon, C.M.; Sundstrom, W.A.; Stewart, I.T.; Beezer, D. Vulnerability to Cumulative Hazards: Coping with the Coffee Leaf Rust Outbreak, Drought, and Food Insecurity in Nicaragua. World Dev. 2017, 93, 136–152. [Google Scholar] [CrossRef]
- Alpízar, F.; Saborío–Rodríguez, M.; Martínez–Rodríguez, M.R.; Viguera, B.; Vignola, R.; Capitán, T.; Harvey, C.A. Determinants of food insecurity among smallholder farmer households in Central America: Recurrent versus extreme weather–driven events. Reg. Environ. Chang. 2020, 20. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A. Achieving 100% Reliance on Renewable Energy for Electricity Generation in Central America; GENI: San Diego, CA, USA, 2012. [Google Scholar]
- Meza, C. A review on the Central America electrical energy scenario. Renew. Sustain. Energy Rev. 2014, 33, 566–577. [Google Scholar] [CrossRef]
- Yépez–García, R.; Johnson, T.M.; Andrés, L.A. Meeting the Electricity Supply/Demand Balance in Latin America & the Caribbean; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Instituto Mexicano de Tecnología del Agua (IMTA). Bases Para un Centro Mexicano en Innovación de Energía Hidroeléctrica. 1era Parte: Infraestructura Hidroeléctrica Actual; IMTA: Jiutepec, Mexican, 2017; ISBN 978-607-9368-93-7. [Google Scholar]
- NgiD, J.Y.; Turner, S.W.; Galelli, S. Influence of El Niño Southern Oscillation on global hydropower production. Environ. Res. Lett. 2017, 12, 034010. [Google Scholar] [CrossRef]
- Barlow, M. Access to Clean Water is Most Violated Human Right. The Guardian. 21 July 2010. Available online: http://westmidwest.nonprofitsoapbox.com/storage/documents/Justice/Documents/Common_Dreamshuman_right_to_clean_water.pdf (accessed on 9 September 2020).
- Litter, M.I.; Morgada, M.E.; Bundschuh, J. Possible treatments for arsenic removal in Latin American waters for human consumption. Environ. Pollut. 2010, 158, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.C.R.; Griesinger, M.O.; Dachs, J.N.W.; Bittner, M.A.; Tavares, S. Inequities in access to and use of drinking water services in Latin America and the Caribbean. Rev. Panam. De Salud Pública 2002, 11, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Kuzdas, C.; Warner, B.; Wiek, A.; Yglesias, M.; Vignola, R.; Ramírez–Cover, A. Identifying the potential of governance regimes to aggravate or mitigate local water conflicts in regions threatened by climate change. Local Environ. 2015, 21, 1387–1408. [Google Scholar] [CrossRef]
- Esquivel–Hernández, G.; Sánchez–Murillo, R.; Birkel, C.; Boll, J. Climate and Water Conflicts Coevolution from Tropical Development and Hydro–Climatic Perspectives: A Case Study of Costa Rica. Jawra J. Am. Water Resour. Assoc. 2017, 54, 451–470. [Google Scholar] [CrossRef]
- Reyer, C.P.; Adams, S.; Albrecht, T.; Baarsch, F.; Boit, A.; Trujillo, N.C.; Cartsburg, M.; Coumou, D.; Eden, A.; Fernandes, E.; et al. Climate change impacts in Latin America and the Caribbean and their implications for development. Reg. Environ. Chang. 2015, 17, 1601–1621. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Amador, J.A.; Alfaro, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94–112. [Google Scholar] [CrossRef]
- Taylor, M.A.; Whyte, F.S.; Stephenson, T.S.; Campbell, J.D. Why dry? Investigating the future evolution of the Caribbean Low Level Jet to explain projected Caribbean drying. Int. J. Clim. 2012, 33, 784–792. [Google Scholar] [CrossRef]
- Scholze, M.; Knorr, W.; Arnell, N.W.; Prentice, I.C. A climate–change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA 2006, 103, 13116–13120. [Google Scholar] [CrossRef] [Green Version]
- Aleixo, I.; Norris, D.; Hemerik, L.; Barbosa, A.; Prata, E.M.B.; Costa, F.; Poorter, L. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 2019, 9, 384–388. [Google Scholar] [CrossRef]
- Mason–Romo, E.D.; Ceballos, G.; Lima, M.; Martínez–Yrízar, A.; Jaramillo, V.J.; Maass, M. Long–term population dynamics of small mammals in tropical dry forests, effects of unusual climate events, and implications for management and conservation. For. Ecol. Manag. 2018, 426, 123–133. [Google Scholar] [CrossRef]
- Stan, K.; Sanchez–Azofeifa, A. Tropical Dry Forest Diversity, Climatic Response, and Resilience in a Changing Climate. Forests 2019, 10, 443. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, Y. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.E.; Hayden, B.P.; Gay, D.A.; Phillips, W.L.; Jones, G.V. The North Atlantic Subtropical Anticyclone. J. Clim. 1997, 10, 728–744. [Google Scholar] [CrossRef]
- Sahsamanoglou, H.S. A contribution to the study of action centres in the North Atlantic. Int. J. Clim. 1990, 10, 247–261. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Fu, R.; Deng, Y.; Wang, H. Changes to the North Atlantic Subtropical High and Its Role in the Intensification of Summer Rainfall Variability in the Southeastern United States. J. Clim. 2011, 24, 1499–1506. [Google Scholar] [CrossRef] [Green Version]
- Diem, J.E. Synoptic–Scale Controls of Summer Precipitation in the Southeastern United States. J. Clim. 2006, 19, 613–621. [Google Scholar] [CrossRef]
- Wei, W.; Li, W.; Deng, Y.; Yang, S.; Jiang, J.H.; Huang, L.; Liu, W.T. Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer. Clim. Dyn. 2017, 50, 2457–2469. [Google Scholar] [CrossRef] [Green Version]
- Small, R.J.O.; De Szoeke, S.P.; Xie, S.-P. The Central American Midsummer Drought: Regional Aspects and Large–Scale Forcing. J. Clim. 2007, 20, 4853–4873. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, W.; Kushnir, Y. Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Clim. Dyn. 2011, 39, 1401–1412. [Google Scholar] [CrossRef] [Green Version]
- Sha, F.; Qi, L.; Yun–Fei, F. Precipitation under Subtropical High Conditions: Evidence and Implications. Atmos. Ocean. Sci. Lett. 2009, 2, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, L.; Ting, M.; Liu, Y. Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci. 2012, 5, 830–834. [Google Scholar] [CrossRef]
- Song, F.; Leung, L.R.; Lu, J.; Dong, L. Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Clim. Chang. 2018, 8, 787–792. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Deng, Y. Summer rainfall variability over the Southeastern United States and its intensification in the 21st century as assessed by CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 340–354. [Google Scholar] [CrossRef]
- Li, W.; Zou, T.; Li, L.; Deng, Y.; Sun, V.T.; Zhang, Q.; Layton, J.B.; Setoguchi, S. Impacts of the North Atlantic subtropical high on interannual variation of summertime heat stress over the conterminous United States. Clim. Dyn. 2019, 53, 3345–3359. [Google Scholar] [CrossRef]
- Hadley, G. VI. Concerning the cause of the general trade–winds. Philos. Trans. R. Soc. Lond. 1735, 39, 58–62. [Google Scholar] [CrossRef]
- Webster, P.J. The Elementary Hadley Circulation. In Advances in Global Change Research; Springer Science and Business Media LLC.: Berlin, Germany, 2004; Volume 21, pp. 9–60. [Google Scholar]
- Lindzen, R.S.; Nigam, S. On the Role of Sea Surface Temperature Gradients in Forcing Low–Level Winds and Convergence in the Tropics. J. Atmos. Sci. 1987, 44, 2418–2436. [Google Scholar] [CrossRef] [Green Version]
- Neelin, J.D. A simple model for surface stress and low–level flow in the tropical atmosphere driven by prescribed heating. Q. J. R. Meteorol. Soc. 1988, 114, 747–770. [Google Scholar] [CrossRef]
- Vimont, D.J.; Battisti, D.S.; Hirst, A.C. Footprinting: A seasonal connection between the tropics and mid–latitudes. Geophys. Res. Lett. 2001, 28, 3923–3926. [Google Scholar] [CrossRef]
- Zhao, Y.; Di Lorenzo, E. The impacts of Extra–tropical ENSO Precursors on Tropical Pacific Decadal–scale Variability. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Renault, L.; McWilliams, J.C.; Masson, S. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air–Sea Coupling. Sci. Rep. 2017, 7, 17747. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Pei, Y.; Kang, X. Assessing feedback of tropical instability wave–induced wind stress perturbations in the equatorial Pacific. Int. J. Clim. 2018, 39, 1634–1643. [Google Scholar] [CrossRef]
- Hastenrath, S. Interannual Variability and Annual Cycle: Mechanisms of Circulation and Climate in the Tropical Atlantic Sector. Mon. Weather. Rev. 1984, 112, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.; Donohoe, A.; Ferreira, D.; McGee, D. The ocean’s role in setting the mean position of the Inter–Tropical Convergence Zone. Clim. Dyn. 2014, 42, 1967–1979. [Google Scholar] [CrossRef] [Green Version]
- SchneideriD, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Xiang, B.; Zhao, M.; Ming, Y.; Yu, W.; Kang, S.M. Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model. J. Clim. 2018, 31, 5609–5628. [Google Scholar] [CrossRef]
- Nicholson, S.E. The ITCZ and the Seasonal Cycle over Equatorial Africa. Bull. Am. Meteorol. Soc. 2018, 99, 337–348. [Google Scholar] [CrossRef]
- Wang, H.; Fu, R. The Influence of Amazon Rainfall on the Atlantic ITCZ through Convectively Coupled Kelvin Waves. J. Clim. 2007, 20, 1188–1201. [Google Scholar] [CrossRef] [Green Version]
- Tomaziello, A.C.N.; Carvalho, L.M.V.; Gandu, A.W. Intraseasonal variability of the Atlantic Intertropical Convergence Zone during austral summer and winter. Clim. Dyn. 2015, 47, 1717–1733. [Google Scholar] [CrossRef]
- Takahashi, K.; Battisti, D.S. Processes Controlling the Mean Tropical Pacific Precipitation Pattern. Part I: The Andes and the Eastern Pacific ITCZ. J. Clim. 2007, 20, 3434–3451. [Google Scholar] [CrossRef] [Green Version]
- Durán-Quesada, A.M.; Gimeno, L.; Amador, J.A.; Nieto, R. Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. J. Geophys. Res. Atmos. 2010, 16, 115. [Google Scholar]
- Durán–Quesada, A.M.; Gimeno, L.; Amador, J. Role of moisture transport for Central American precipitation. Earth Syst. Dyn. 2017, 8, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Munnich, M.; Neelin, J.D. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Enfield, D.B.; Alfaro, E.J. The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Clim. 1999, 12, 2093–2103. [Google Scholar] [CrossRef] [Green Version]
- Enfield, D.; Lee, S.K. The Heat Balance of the Western Hemisphere Warm Pool. J. Clim. 2005, 18, 2662–2681. [Google Scholar] [CrossRef] [Green Version]
- Karnauskas, K.B.; Busalacchi, A.J. Mechanisms for the Interannual Variability of SST in the East Pacific Warm Pool. J. Clim. 2009, 22, 1375–1392. [Google Scholar] [CrossRef]
- Fiedler, P.C. The annual cycle and biological effects of the Costa Rica Dome. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 321–338. [Google Scholar] [CrossRef]
- Misra, V.; Groenen, D.; Bhardwaj, A.; Mishra, A.; Bharadwaj, A. The warm pool variability of the tropical northeast Pacific. Int. J. Clim. 2016, 36, 4625–4637. [Google Scholar] [CrossRef]
- Raymond, D.J.; Raga, G.B.; Bretherton, C.S.; Molinari, J.; López–Carrillo, C.; Fuchs, Ž. Convective Forcing in the Intertropical Convergence Zone of the Eastern Pacific. J. Atmos. Sci. 2003, 60, 2064–2082. [Google Scholar] [CrossRef] [Green Version]
- Crosbie, E.; Serra, Y.L. Intraseasonal Modulation of Synoptic–Scale Disturbances and Tropical Cyclone Genesis in the Eastern North Pacific. J. Clim. 2014, 27, 5724–5745. [Google Scholar] [CrossRef]
- Misra, V.; Chan, S.; Wu, R.; Chassignet, E. Air–sea interaction over the Atlantic warm pool in the NCEP CFS. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Sorí, R.; Drumond, A.; Nieto, R. Moisture contribution of the Atlantic Warm Pool to precipitation: A Lagrangian analysis. Front. Environ. Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Ruiz–Barradas, A.; Nigam, S. Warm Season Rainfall Variability over the U.S. Great Plains in Observations, NCEP and ERA–40 Reanalyses, and NCAR and NASA Atmospheric Model Simulations. J. Clim. 2005, 18, 1808–1830. [Google Scholar] [CrossRef]
- Wang, C.; Lee, S.K.; Enfield, D. Climate Response to Anomalously Large and Small Atlantic Warm Pools during the Summer. J. Clim. 2008, 21, 2437–2450. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Enfield, D.; Lee, S.K.; Landsea, C.W. Influences of the Atlantic Warm Pool on Western Hemisphere Summer Rainfall and Atlantic Hurricanes. J. Clim. 2006, 19, 3011–3028. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Chen, H.; XIA, T.; TU, S.; Tianjin, B.N. Correlation analysis of the cycle process between the Western Pacific warm pool and ENSO during 1980–2016. J. Mar. Meteorol. 2017, 37, 85–94. [Google Scholar]
- Whyte, F.S.; Taylor, M.A.; Stephenson, T.S.; Campbell, J.D. Features of the Caribbean low level jet. Int. J. Clim. 2007, 28, 119–128. [Google Scholar] [CrossRef]
- Wang, C. Variability of the Caribbean Low–Level Jet and its relations to climate. Clim. Dyn. 2007, 29, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Stephenson, T.S.; Taylor, M.A.; Campbell, J.D. Statistical downscaling of North Atlantic tropical cyclone frequency and the amplified role of the Caribbean low–level jet in a warmer climate. J. Geophys. Res. Atmos. 2016, 121, 3741–3758. [Google Scholar] [CrossRef]
- Serra, Y.L.; Kiladis, G.N.; Hodges, K.I. Tracking and Mean Structure of Easterly Waves over the Intra–Americas Sea. J. Clim. 2010, 23, 4823–4840. [Google Scholar] [CrossRef]
- Whitaker, J.W.; Maloney, E.D. Influence of the Madden–Julian Oscillation and Caribbean Low–Level Jet on East Pacific Easterly Wave Dynamics. J. Atmos. Sci. 2018, 75, 1121–1141. [Google Scholar] [CrossRef]
- Poveda, G.; MesaiD, O.J. Feedbacks between Hydrological Processes in Tropical South America and Large–Scale Ocean–Atmospheric Phenomena. J. Clim. 1997, 10, 2690–2702. [Google Scholar] [CrossRef]
- Sakamoto, M.S.; Ambrizzi, T.; Poveda, G.G. Rcio Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Adv. Meteorol. 2012, 2011, 1–11. [Google Scholar] [CrossRef]
- Arias, P.A.; Martínez, J.A.; Vieira, S.C. Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim. Dyn. 2015, 45, 2861–2884. [Google Scholar] [CrossRef]
- Hoyos, I.; Dominguez, F.; Cañón–Barriga, J.; Martínez, J.A.; Nieto, R.; Gimeno, L.; Dirmeyer, P.A. Moisture origin and transport processes in Colombia, northern South America. Clim. Dyn. 2017, 50, 971–990. [Google Scholar] [CrossRef]
- Gallego, D.; García–Herrera, R.; Gómez–Delgado, F.D.P.; Ordoñez–Perez, P.; Ribera, P. Tracking the moisture transport from the Pacific towards Central and northern South America since the late 19th century. Earth Syst. Dyn. 2019, 10, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, L.; Poveda, G.; Mejía, J.F. Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. Int. J. Clim. 2017, 37, 241–397. [Google Scholar] [CrossRef]
- Yepes, J.; Poveda, G.; Mejía, J.F.; Moreno, L.; Rueda, C. CHOCO–JEX: A Research Experiment Focused on the Chocó Low–Level Jet over the Far Eastern Pacific and Western Colombia. Bull. Am. Meteorol. Soc. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Poveda, G.; Álvarez, D.M.; Rueda, Ó.A. Hydro–climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim. Dyn. 2010, 36, 2233–2249. [Google Scholar] [CrossRef]
- Adams, D.K.; Comrie, A.C. The north American monsoon. Bull. Am. Meteorol. Soc. 1997, 78, 2197–2214. [Google Scholar] [CrossRef] [Green Version]
- Ordoñez–Peréz, P.; Nieto, R.; Gimeno, L.; Ribera, P.; Gallego, D.; Ochoa, C.; Quintanar, A.I. Climatological moisture sources for the Western North American Monsoon through a Lagrangian approach: Their influence on precipitation intensity. Earth Syst. Dyn. 2019, 10, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Vivoni, E.R.; Rodríguez, J.C.; Watts, C.J. On the spatiotemporal variability of soil moisture and evapotranspiration in a mountainous basin within the North American monsoon region. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Vivoni, E.R.; Moreno, H.A.; Mascaro, G.; Rodríguez, J.C.; Watts, C.J.; Garatuza-Payan, J.; Scott, R.L. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Barlow, M.; Nigam, S.; Berbery, E.H. Evolution of the North American Monsoon System. J. Clim. 1998, 11, 2238–2257. [Google Scholar] [CrossRef]
- Berbery, E.H. Mesoscale Moisture Analysis of the North American Monsoon. J. Clim. 2001, 14, 121–137. [Google Scholar] [CrossRef]
- Wright, W.E.; Long, A.; Comrie, A.C.; Leavitt, S.W.; Cavazos, T.; Eastoe, C. Monsoonal moisture sources revealed using temperature, precipitation, and precipitation stable isotope timeseries. Geophys. Res. Lett. 2001, 28, 787–790. [Google Scholar] [CrossRef]
- Hu, H.; Dominguez, F. Evaluation of Oceanic and Terrestrial Sources of Moisture for the North American Monsoon Using Numerical Models and Precipitation Stable Isotopes. J. Hydrometeorol. 2015, 16, 19–35. [Google Scholar] [CrossRef]
- Hastenrath, S.L. On General Circulation and Energy Budget in the Area of the Central American Seas. J. Atmos. Sci. 1966, 23, 694–711. [Google Scholar] [CrossRef]
- Morales, J.S.; Arias, P.A.; Martínez, J.A. Role of Caribbean low–level jet and Choco jet in the transport of moisture patterns towards Central America. In Proceedings of the First International Electronic Conference on the Hydrological Cycle; MDPI: Basel, Switzerland, 2017; p. 4861. [Google Scholar]
- Esquivel-Hernández, G.; Mosquera, G.M.; Sánchez-Murillo, R.; Quesada-Román, A.; Birkel, C.; Crespo, P.; Célleri, R.; Windhorst, D.; Breuer, L.; Boll, J. Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Niño conditions (2015–2016). Hydrol. Process. 2019, 33, 1802–1817. [Google Scholar] [CrossRef]
- Durán–Quesada, A.M. Sources of Moisture for Central America and Transport Based on a Lagrangian Approach: Variability, Contributions to Precipitation and Transport Mechanisms. Unpublished. Ph.D. Thesis, University of Vigo, Vigo, Spain, 2012. [Google Scholar]
- Sánchez-Murillo, R.; Durán-Quesada, A.M.; Birkel, C.; Esquivel-Hernández, G.; Boll, J. Tropical precipitation anomalies and d-excess evolution during El Niño 2014-16. Hydrol. Process. 2017, 31, 956–967. [Google Scholar] [CrossRef]
- Taylor, M.A.; Stephenson, T.S.; Owino, A.; Chen, A.A.; Campbell, J.D. Tropical gradient influences on Caribbean rainfall. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Taylor, M.A.; Alfaro, E.J. Climate of Central America and the Caribbean. In Encyclopedia of World Climatology, Encyclopedia of Earth Sciences Series; Oliver, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 183–189. [Google Scholar] [CrossRef]
- Poveda, G.; MesaiD, O.J.; Salazar, L.F.; Arias, P.A.; Moreno, H.A.; Vieria–Agudelo, S.C.; Agudelo, P.A.; Toro, V.G.; Alvarez, J.F. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon. Weather. Rev. 2005, 133, 228–240. [Google Scholar] [CrossRef]
- Magaña, V.; Caetano, E. Temporal evolution of summer convective activity over the Americas warm pools. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Curtis, S. Interannual variability of the bimodal distribution of summertime rainfall over Central America and tropical storm activity in the far–eastern Pacific. Clim. Res. 2002, 22, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Karnauskas, K.; Seager, R.; Giannini, A.; Busalacchi, A. A simple mechanism for the climatological midsummer drought along the Pacific coast of Central America. Atmósfera 2013, 26, 261–281. [Google Scholar] [CrossRef] [Green Version]
- Gamble, D.W.; Parnell, D.B.; Curtis, S. Spatial variability of the Caribbean mid–summer drought and relation to north Atlantic high circulation. Int. J. Clim. 2008, 28, 343–350. [Google Scholar] [CrossRef]
- Herrera, E.; Magaña, V.; Caetano, E. Air–sea interactions and dynamical processes associated with the midsummer drought. Int. J. Clim. 2014, 35, 1569–1578. [Google Scholar] [CrossRef]
- Muñoz, E.; Busalacchi, A.J.; Nigam, S.; Ruiz–Barradas, A. Winter and Summer Structure of the Caribbean Low–Level Jet. J. Clim. 2008, 21, 1260–1276. [Google Scholar] [CrossRef]
- Maldonado, T.; Rutgersson, A.; Alfaro, E.; Amador, J.; Claremar, B. Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures. Adv. Geosci. 2016, 42, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Perdigón–Morales, J.; Romero–Centeno, R.; Pérez, P.O.; Barrett, B.S. The midsummer drought in Mexico: Perspectives on duration and intensity from the CHIRPS precipitation database. Int. J. Clim. 2017, 38, 2174–2186. [Google Scholar] [CrossRef]
- Zhao, Z.; Holbrook, N.J.; Oliver, E.C.J.; Ballestero, D.; Vargas–Hernandez, J.M. Characteristic atmospheric states during mid–summer droughts over Central America and Mexico. Clim. Dyn. 2020, 1–21. [Google Scholar] [CrossRef]
- Wheeler, M.C.; Hendon, H.H. An all–season real–time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather. Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Perdigón–Morales, J.; Romero–Centeno, R.; Barrett, B.S.; Ordoñez, P. Intraseasonal Variability of Summer Precipitation in Mexico: MJO Influence on the Midsummer Drought. J. Clim. 2019, 32, 2313–2327. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A.; Rubiera, J.; Landsea, C.; Fernández, M.L.; Klein, R. Hurricane Vulnerability in Latin America and The Caribbean: Normalized Damage and Loss Potentials. Nat. Hazards Rev. 2003, 4, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, S.; Teodonio, L.; Siani, A.-M.; Casale, G.R. Tropical storm impact in Central America. Meteorol. Appl. 2006, 13, 21–28. [Google Scholar] [CrossRef]
- Rossi, E.; La Cerda, I.G.-D.; Oliver, C.; Kulakowski, D. Wind effects and regeneration in broadleaf and pine stands after hurricane Felix (2007) in Northern Nicaragua. For. Ecol. Manag. 2017, 400, 199–207. [Google Scholar] [CrossRef]
- Beven, J.L. The 2016 Atlantic Hurricane Season: Matthew Leads an Above–Average Season. Weather 2017, 70, 28–35. [Google Scholar] [CrossRef]
- Amador, J.A.; Magaña, V. The low–level jet and convective activity in the Caribbean. In Proceedings of the Reprints of the 24th Conference on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, USA, 29 May–2 June 2000; pp. 114–115. [Google Scholar]
- Sánchez–Murillo, R.; Durán–Quesada, A.M.; Esquivel–Hernández, G.; Rojas–Cantillano, D.; Birkel, C.; Welsh, K.; Sánchez–Llull, M.; Alonso–Hernández, C.M.; Tetzlaff, D.; Soulsby, C.; et al. Deciphering key processes controlling rainfall isotopic variability during extreme tropical cyclones. Nat. Commun. 2019, 10, 4321–4331. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Farrell, B.F. Tropical Cyclone Formation. J. Atmos. Sci. 1993, 50, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Tropi Calcyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Sobel, A.H.; Bretherton, C.S. Development of Synoptic–Scale Disturbances over the Summertime Tropical Northwest Pacific. J. Atmos. Sci. 1999, 56, 3106–3127. [Google Scholar] [CrossRef]
- Goldenberg, S.B.; Shapiro, L.J. Physical Mechanisms for the Association of El Niño and West African Rainfall with Atlantic Major Hurricane Activity. J. Clim. 1996, 9, 1169–1187. [Google Scholar] [CrossRef]
- Landsea, C.W. A climatology of intense (or major) Atlantic hurricanes. Mon. Weather Rev. 1993, 121, 1703–1713. [Google Scholar] [CrossRef] [Green Version]
- Blake, E.S.; Ethan, J.; Gibney, D.P.; Brown, M.M.; James, L.; Franklin, T.B. Tropical Cyclones of Eastern North Pacific Basin, 1949–2006, Historical Climatology Series 5–6; National Climatic Data Center: Asheville, NC, USA, 2009. [Google Scholar]
- McAdie, C.J.; Landsea, C.J.; Neumann, E.S.; Blake, G.R. Tropical Cyclones of the North Atlantic Ocean, 1851–2006; Historical Climatology, Series Vol. 6–2; National Climatic Data Center: Asheville, NC, USA, 2009; 244p. [Google Scholar]
- Houze, R.A., Jr. Mesoscale convective systems. Rev. Geophys. 2004, 42. [Google Scholar] [CrossRef] [Green Version]
- Mapes, B.; Tulich, S.; Lin, J.; Zuidema, P. The mesoscale convection life cycle: Building block or prototype for large–scale tropical waves? Dyn. Atmos. Ocean. 2006, 42, 3–29. [Google Scholar] [CrossRef]
- Zhang, S.; Parsons, D.B.; Wang, Y. Wave Disturbances and Their Role in the Maintenance, Structure, and Evolution of a Mesoscale Convection System. J. Atmos. Sci. 2019, 77, 51–77. [Google Scholar] [CrossRef]
- Ocasio, K.M.N.; Evans, J.L.; Young, G.S. Tracking Mesoscale Convective Systems that are Potential Candidates for Tropical Cyclogenesis. Mon. Weather. Rev. 2020, 148, 655–669. [Google Scholar] [CrossRef]
- Mohr, K.I.; Zipser, E.J. Mesoscale Convective Systems Defined by Their 85–GHz Ice Scattering Signature: Size and Intensity Comparison over Tropical Oceans and Continents. Mon. Weather. Rev. 1996, 124, 2417–2437. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, S.W.; Zipser, E.J. The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements. J. Clim. 2003, 16, 1456–1475. [Google Scholar] [CrossRef] [Green Version]
- Mapes, B.E.; Warner, T.T.; Xu, M.; Negri, A.J. Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Weather Rev. 2003, 131, 799–812. [Google Scholar] [CrossRef]
- Rydbeck, A.V.; Maloney, E.D.; Alaka, G.J. In Situ Initiation of East Pacific Easterly Waves in a Regional Model. J. Atmos. Sci. 2017, 74, 333–351. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features. Mon. Weather Rev. 2006, 134, 2702–2721. [Google Scholar] [CrossRef] [Green Version]
- Huaman, L.; Schumacher, C. Assessing the Vertical Latent Heating Structure of the East Pacific ITCZ Using the CloudSat CPR and TRMM PR. J. Clim. 2018, 31, 2563–2577. [Google Scholar] [CrossRef]
- Rapp, A.D.; Peterson, A.G.; Frauenfeld, O.W.; Quiring, S.M.; Roark, E.B. Climatology of Storm Characteristics in Costa Rica using the TRMM Precipitation Radar. J. Hydrometeorol. 2014, 15, 2615–2633. [Google Scholar] [CrossRef]
- Zuluaga, M.D.; Houze, R.A. Extreme Convection of the Near–Equatorial Americas, Africa, and Adjoining Oceans as seen by TRMM. Mon. Weather. Rev. 2015, 143, 298–316. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A. Stratiform Rain in the Tropics as Seen by the TRMM Precipitation Radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Zhang, C. Madden–Julian Oscillation. Rev. Geophys. 2005, 43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Gottschalck, J.; Maloney, E.D.; Moncrieff, M.W.; Vitart, F.; Waliser, D.; Wang, B.; Wheeler, M.C. Cracking the MJO nut. Geophys. Res. Lett. 2013, 40, 1223–1230. [Google Scholar] [CrossRef]
- Barlow, M.; Salstein, D. Summertime influence of the Madden–Julian Oscillation on daily rainfall over Mexico and Central America. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Aiyyer, A.; Molinari, J. MJO and tropical cyclognesis in the Gulf of Mexico and easternPacific: Case study and idealized numerical modeling. J. Atmos. Sci. 2008, 65, 2691–2704. [Google Scholar] [CrossRef] [Green Version]
- Rydbeck, A.V.; Maloney, E.D. On the Convective Coupling and Moisture Organization of East Pacific Easterly Waves. J. Atmos. Sci. 2015, 72, 3850–3870. [Google Scholar] [CrossRef]
- Jury, M.R.; Rios–Berrios, R.; Garcia, E. Caribbean hurricanes: Changes of intensity and track prediction. Theor. Appl. Clim. 2011, 107, 297–311. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, X.; Waliser, D.E. Modulation of the Convectively Coupled Kelvin Waves over South America and the Tropical Atlantic Ocean in Association with the Madden–Julian Oscillation. J. Atmos. Sci. 2014, 71, 1371–1388. [Google Scholar] [CrossRef]
- Jury, M.R. MJO influence in the Caribbean. Theor. Appl. Clim. 2019, 139, 1559–1567. [Google Scholar] [CrossRef]
- Zhao, Z.; Oliver, E.C.J.; Ballestero, D.; Vargas–Hernandez, J.M.; Holbrook, N.J. Influence of the Madden–Julian oscillation on Costa Rican mid–summer drought timing. Int. J. Clim. 2018, 39, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Hoar, T.J. El Niño and climate change. Geophys. Res. Lett. 1997, 24, 3057–3060. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T.M.L. Global patterns of ENSO–induced precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef] [Green Version]
- Magaña, V.O.; Vazquez, J.L.; Perez, J.L.; Perez, J.B. Impact of El Niño on precipitation in Mexico. Geofísica Int. 2003, 42, 313–330. [Google Scholar]
- Amador, J.A.; Durán–Quesada, A.M.; Rivera, E.R.; Mora, G.; Sáenz, F.; Calderón, B.; Mora, N. The easternmost tropical Pacific. Part II: Seasonal and intraseasonal modes of atmospheric variability. Rev. De Biol. Trop. 2016, 64, 23–57. [Google Scholar] [CrossRef]
- Maldonado, T.; Alfaro, E.J.; Fallas–López, B.; Alvarado, L. Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using Canonical Correlation Analysis. Adv. Geosci. 2013, 33, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Melgarejo, A.E.; Ordoñez–Peréz, P.; Nieto, R.; Gimeno, L.; Ribera, P. Moisture transport related to the ENSO effects in the Mexican precipitation. In Proceedings of the First International Electronic Conference on the Hydrological Cycle; MDPI: Basel, Switzerland, 2017; p. 4884. [Google Scholar]
- Bhattacharya, T.; Chiang, J.C.H. Spatial variability and mechanisms underlying El Niño–induced droughts in Mexico. Clim. Dyn. 2014, 43, 3309–3326. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.H.; Neelin, J.D. ENSO Influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, L.; Vecchi, G.A.; Msadek, R.; Murakami, H.; Wittenberg, A.T.; Zeng, F. Impact of Strong ENSO on Regional Tropical Cyclone Activity in a High–Resolution Climate Model in the North Pacific and North Atlantic Oceans. J. Clim. 2016, 29, 2375–2394. [Google Scholar] [CrossRef]
- Camargo, S.J.; Emanuel, K.A.; Sobel, A.H. Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. J. Clim. 2007, 20, 4819–4834. [Google Scholar] [CrossRef]
- Bello, O.; Malavassi, L.M.O.; Samaniego, J. La estimación de los efectos de los desastres en América Latina, 1972–2010. In Serie Medio Ambiente y Desarrollo N° 157; CEPAL: Santiago, CL, USA, 2014. [Google Scholar]
- Chiang, J.C.H.; Vimont, D.J. Analagous meridional modes of atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J. Clim. 2004, 17, 4143–4158. [Google Scholar] [CrossRef]
- Vimont, D.J.; Kossin, J.P. The Atlantic Meridional Mode and hurricane activity. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Patricola, C.M.; Saravanan, R.; Chang, P. The Impact of the El Niño–Southern Oscillation and Atlantic Meridional Mode on Seasonal Atlantic Tropical Cyclone Activity. J. Clim. 2014, 27, 5311–5328. [Google Scholar] [CrossRef]
- Lim, Y.-K.; Schubert, S.D.; Reale, O.; Molod, A.M.; Suarez, M.J.; Auer, B.M. Large–Scale Controls on Atlantic Tropical Cyclone Activity on Seasonal Time Scales. J. Clim. 2016, 29, 6727–6749. [Google Scholar] [CrossRef]
- Colbert, A.J.; Soden, B. Climatological Variations in North Atlantic Tropical Cyclone Tracks. J. Clim. 2012, 25, 657–673. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Jury, M.R.; Malmgren, B.A.; Winter, A. Subregional precipitation climate of the Caribbean and relationships with ENSO and NAO. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Rodriguez–Vera, G.; Romero–Centeno, R.; Castro, C.L.; Castro, V.M. Coupled Interannual Variability of Wind and Sea Surface Temperature in the Caribbean Sea and the Gulf of Mexico. J. Clim. 2019, 32, 4263–4280. [Google Scholar] [CrossRef] [Green Version]
- Gouirand, I.; Jury, M.R.; Sing, B. An Analysis of Low– and High–Frequency Summer Climate Variability around the Caribbean Antilles. J. Clim. 2012, 25, 3942–3952. [Google Scholar] [CrossRef]
- Vimont, D.J. The Contribution of the Interannual ENSO Cycle to the Spatial Pattern of Decadal ENSO–Like Variability. J. Clim. 2005, 18, 2080–2092. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific decadal climate oscillation with impacts on salmon. Bull. Am. Meteor. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Maldonado, T.; Rutgersson, A.; Amador, J.; Alfaro, E.; Claremar, B. Variability of the Caribbean low–level jet during boreal winter: Large–scale forcings. Int. J. Clim. 2015, 36, 1954–1969. [Google Scholar] [CrossRef]
- Pavia, E.G.; Graef, F.; Reyes, J. PDO–ENSO Effects in the Climate of Mexico. J. Clim. 2006, 19, 6433–6438. [Google Scholar] [CrossRef]
- Méndez, M.; Magaña, V. Regional Aspects of Prolonged Meteorological Droughts over Mexico and Central America. J. Clim. 2010, 23, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Delworth, T.L.; Mann, M.E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 2000, 16, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Ribera, P.; Ordoñez, P.; Gallego, D.; Peña–Ortiz, C. Internal variability and external forcings in the ocean–atmosphere multidecadal oscillator over the North Atlantic. Clim. Dyn. 2020, 1–15. [Google Scholar] [CrossRef]
- Ashby, S.A.; Taylor, M.A.; Chen, A.A. Statistical models for predicting rainfall in the Caribbean. Theor. Appl. Clim. 2005, 82, 65–80. [Google Scholar] [CrossRef]
- Maldonado, T.; Alfaro, E.J.; Hidalgo, H.G. A review of the main drivers and variability of Central America’s Climate and seasonal forecast systems. Rev. De Biol. Trop. 2018, 66, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, S.B.; Landsea, C.W.; Mestas–Nuñez, A.M.; Gray, W.M. The Recent Increase in Atlantic Hurricane Activity: Causes and Implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Mendez–Gonzalez, J.; Ramirez, L.A.; Cornejo, O.E.; Zárate, L.A.; Cavazos, P.T. Investigaciones Geográficas, Boletín del Instituto de Geografía; UNAM: Mexico City, Mexico, 2010; Volume 73, pp. 57–70, ISSN 0188-4611. [Google Scholar]
- Ravelo, A.C.; Andreasen, D.H.; Lyle, M.; Lyle, A.O.; Wara, M.W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 2004, 429, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Karas, C.; Nürnberg, D.; Bahr, A.; Groeneveld, J.; Herrle, J.O.; Tiedemann, R.; Demenocal, P.B. Pliocene oceanic seaways and global climate. Sci. Rep. 2017, 7, 39842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auderset, A.; Martínez–García, A.; Tiedemann, R.; Hasenfratz, A.P.; Eglinton, T.I.; Schiebel, R.; Sigman, D.M.; Haug, G.H. Gulf Stream intensification after the early Pliocene shoaling of the Central American Seaway. Earth Planet. Sci. Lett. 2019, 520, 268–278. [Google Scholar] [CrossRef]
- Peterson, L.C.; Haug, G.H. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 234, 97–113. [Google Scholar] [CrossRef]
- Richey, J.N.; Poore, R.Z.; Flower, B.P.; Quinn, T.M.; Hollander, D.J. Regionally coherent Little Ice Age cooling in the Atlantic Warm Pool. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Benway, H.M.; Mix, A.C.; Haley, B.A.; Klinkhammer, G. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr. Paleoceanography 2006, 21. [Google Scholar] [CrossRef] [Green Version]
- LeDuc, G.; Vidal, L.; Tachikawa, K.; Rostek, F.; Sonzogni, C.; Beaufort, L.; Bard, E. Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature 2007, 445, 908–911. [Google Scholar] [CrossRef]
- Lachniet, M.; Johnson, L.; Asmerom, Y.; Burns, S.J.; Polyak, V.J.; Patterson, W.P.; Burt, L.; Azouz, A. Late Quaternary moisture export across Central America and to Greenland: Evidence for tropical rainfall variability from Costa Rican stalagmites. Quat. Sci. Rev. 2009, 28, 3348–3360. [Google Scholar] [CrossRef] [Green Version]
- Winter, A.; Zanchettin, D.; Lachniet, M.; Vieten, R.; Pausata, F.S.R.; Ljungqvist, F.C.; Cheng, H.; Edwards, R.L.; Miller, T.; Rubinetti, S.; et al. Initiation of a stable convective hydroclimatic regime in Central America circa 9000 years BP. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.; Van Beynen, P.; Delong, K.; Polyak, V.J.; Asmerom, Y.; Reeder, P. A mid–Holocene paleoprecipitation record from Belize. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 463, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Porinchu, D.F.; Horn, S.P. Late Holocene hydroclimate variability in Costa Rica: Signature of the terminal classic drought and the Medieval Climate Anomaly in the northern tropical Americas. Quat. Sci. Rev. 2019, 215, 144–159. [Google Scholar] [CrossRef]
- Linsley, B.K.; Dunbar, R.B.; Wellington, G.M.; Mucciarone, D.A. A coral–based reconstruction of Intertropical Convergence Zone variability over Central America since 1707. J. Geophys. Res. Space Phys. 1994, 99, 9977. [Google Scholar] [CrossRef]
- Akers, P.D.; Brook, G.A.; Railsback, L.B.; Liang, F.; Iannone, G.; Webster, J.W.; Reeder, P.P.; Cheng, H.; Edwards, R.L. An extended and higher–resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 459, 268–288. [Google Scholar] [CrossRef]
- Hodell, D.A.; Brenner, M.; Curtis, J.H. Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat. Sci. Rev. 2005, 24, 1413–1427. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef]
- Falkowski, P. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 2000, 290, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Zhu, J.; Wang, S.; Yue, C.; Shen, H. Global warming, human–induced carbon emissions, and their uncertainties. Sci. China Earth Sci. 2011, 54, 1458–1468. [Google Scholar] [CrossRef]
- Summerhayes, C.P.; Zalasiewicz, J. Global warming and the Anthropocene. Geol. Today 2018, 34, 194–200. [Google Scholar] [CrossRef]
- Previdi, M.; Liepert, B.G.; Peteet, D.; Hansen, J.; Beerling, D.J.; BroccoliiD, A.J.; Frolking, S.; Galloway, J.N.; Heimann, M.; Le Quéré, C.; et al. Climate sensitivity in the Anthropocene. Q. J. R. Meteorol. Soc. 2013, 139, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.J.M.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Herrera, D.A.; Ault, T.R.; Fasullo, J.T.; Coats, S.; Carrillo, C.M.; Cook, B.I.; Williams, A.P. Exacerbation of the 2013–2016 Pan-Caribbean Drought by Anthropogenic Warming. Geophys. Res. Lett. 2018, 45, 10619–10626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhi, Y.; Gardner, T.A.; Goldsmith, G.R.; Silman, M.R.; Zelazowski, P. Tropical Forests in the Anthropocene. Annu. Rev. Environ. Resour. 2014, 39, 125–159. [Google Scholar] [CrossRef] [Green Version]
- Utting, P. Deforestation in Central America: Historical and Contemporary Dynamics. In Sustainable Agriculture in Central America; Springer Science and Business Media LLC.: Berlin, Germany, 1997; pp. 9–29. [Google Scholar]
- Valle, N.T.; Islebe, G.A.; Roy, P.D. Introduction: The Holocene and Anthropocene Environmental History of Mexico. In The Holocene and Anthropocene Environmental History of Mexico; Springer Science and Business Media LLC.: Berlin, Germany, 2019; pp. 1–5. [Google Scholar]
- Zinn, J.O. Living in the Anthropocene: Towards a risk–taking society. Environ. Sociol. 2016, 2, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Frame, D.J.; Harrington, L.J.; Fuglestvedt, J.S.; Millar, R.J.; Joshi, M.M.; Caney, S.; Frame, D.J. Emissions and emergence: A new index comparing relative contributions to climate change with relative climatic consequences. Environ. Res. Lett. 2019, 14, 084009. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Pavia, E.G.; Graef, F.; Reyes, J. Annual and seasonal surface air temperature trends in Mexico. Int. J. Clim. 2009, 29, 1324–1329. [Google Scholar] [CrossRef]
- Navarro–Estupinan, J.; Morua, A.R.; Vivoni, E.R.; Zepeda, J.E.; Montoya, J.; Verduzco, V.S. Observed trends and future projections of extreme heat events in Sonora, Mexico. Int. J. Clim. 2018, 38, 5168–5181. [Google Scholar] [CrossRef]
- Stephenson, T.S.; Vincent, L.A.; Allen, T.; Van Meerbeeck, C.J.; McLean, N.; Peterson, T.C.; Taylor, M.A.; Aaron–Morrison, A.P.; Auguste, T.; Bernard, D.; et al. Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int. J. Clim. 2014, 34, 2957–2971. [Google Scholar] [CrossRef]
- Jones, P.D.; Harpham, C.; Harris, I.; Goodess, C.M.; Burton, A.; Centella-Artola, A.; Taylor, M.A.; Bezanilla-Morlot, A.; Campbell, J.D.; Stephenson, T.S.; et al. Long–term trends in precipitation and temperature across the Caribbean. Int. J. Clim. 2015, 36, 3314–3333. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C.; Demeritte, R.; Duncombe, D.L.; Burton, S.; Thompson, F.; Porter, A.; Mercedes, M.; Fils, R.S.; Tank, A.M.G.K.; Martis, A.; et al. Recent changes in climate extremes in the Caribbean region. J. Geophys. Res. Space Phys. 2002, 107. [Google Scholar] [CrossRef]
- Anderson, T.G.; Anchukaitis, K.J.; Pons, D.; Taylor, M. Multiscale trends and precipitation extremes in the Central American Midsummer Drought. Environ. Res. Lett. 2019, 14, 124016. [Google Scholar] [CrossRef]
- Ruiz-Alvarez, O.; Singh, V.P.; Enciso-Medina, J.; Ontiveros–Capurata, R.E.; Santos, C.A.C. Observed trends in daily extreme precipitation indices in Aguascalientes, Mexico. Meteorol. Appl. 2019, 27. [Google Scholar] [CrossRef]
- Arriaga–Ramírez, S.; Cavazos, T. Regional trends of daily precipitation indices in northwest Mexico and southwest United States. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Hietz, P.; Wanek, W.; Gloor, M. Oxygen isotopes in tree rings record variation in precipitationδ18O and amount effects in the south of Mexico. J. Geophys. Res. Biogeosci. 2013, 118, 1604–1615. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Van Vuuren, D.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Roby, N.; Stewart–Frey, I.T.; Bacon, C.M. Projected twenty–first–century changes in the Central American mid–summer drought using statistically downscaled climate projections. Reg. Environ. Chang. 2017, 17, 2421–2432. [Google Scholar] [CrossRef]
- Nakaegawa, T.; Kitoh, A.; Ishizaki, Y.; Kusunoki, S.; Murakami, H. Caribbean low–level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi–model ensemble and fine–mesh atmospheric general circulation models. Int. J. Clim. 2013, 34, 964–977. [Google Scholar] [CrossRef]
- Cabos, W.; Sein, D.; Durán–Quesada, A.; Liguori, G.; Koldunov, N.; Martinez–Lopez, B.; Alvarez, F.; Sieck, K.; Limareva, N.; Pinto, J.G. Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Clim. Dyn. 2018, 52, 4305–4328. [Google Scholar] [CrossRef] [Green Version]
- Cavazos, T.; Luna-Niño, R.; Cerezo-Mota, R.; Fuentes–Franco, R.; Méndez, M.; Martínez, L.F.P.; Valenzuela, E. Climatic trends and regional climate models intercomparison over the CORDEX-CAM (Central America, Caribbean, and Mexico) domain. Int. J. Clim. 2019, 40, 1396–1420. [Google Scholar] [CrossRef]
- Campbell, J.D.; Taylor, M.A.; Stephenson, T.S.; Watson, R.A.; Whyte, F.S. Future climate of the Caribbean from a regional climate model. Int. J. Clim. 2010, 31, 1866–1878. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Taylor, M.A.; Campbell, J.; Stephenson, T.; New, M.; Centella, A.; Benzanilla, A.; Charlery, J. A review of observed and projected changes in climate for the islands in the Caribbean. Atmósfera 2013, 26, 283–309. [Google Scholar] [CrossRef] [Green Version]
- McLean, N.M.; Stephenson, T.S.; Taylor, M.A.; Campbell, J.D. Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones. Adv. Meteorol. 2015, 2015, 1–18. [Google Scholar] [CrossRef]
- Imbach, P.; Chou, S.C.; Lyra, A.A.; Rodrigues, D.; Latinovic, D.; Siqueira, G.; Silva, A.; Garofolo, L.; Georgiou, S.; Rodriguez, D.A. Future climate change scenarios in Central America at high spatial resolution. PLoS ONE 2018, 13, e0193570. [Google Scholar] [CrossRef] [Green Version]
- Neelin, J.D.; Munnich, M.; Su, H.; Meyerson, J.E.; Holloway, C.E. Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA 2006, 103, 6110–6115. [Google Scholar] [CrossRef] [Green Version]
- Magrin, G.O.; Marengo, J.-P.; Boulanger, M.S.; Buckeridge, E.; Castellanos, G.; Poveda, F.R.; Scarano, S. Vicuña, 2014: Central and South America. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA; pp. 1499–1566.
- Fábrega, J.; Nakaegawa, T.; Pinzón, R.; Nakayama, K.; Arakawa, O.; SOUSEI Theme–C Modeling Group. Hydroclimate projections for Panama in the late 21st Century. Hydrol. Res. Lett. 2013, 7, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Flores, R.A.R.; Taddia, A.P.; Grunwaldt, A.; Jones, R.; Streeter, R. Climate Change Projections in Latin America and the Caribbean: Review of Existing Regional Climate Models’ Outputs; Inter–American Development Bank: Washington, DC, USA, 2016. [Google Scholar]
- Colorado–Ruiz, G.; Cavazos, T.; Salinas, J.A.; De Grau, P.; Ayala, R. Climate change projections from Coupled Model Intercomparison Project phase 5 multi–model weighted ensembles for Mexico, the North American monsoon, and the mid–summer drought region. Int. J. Clim. 2018, 38, 5699–5716. [Google Scholar] [CrossRef]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.-J.; Gu, G.; Bolvin, D.T.; Chiu, L.S.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECLAC (Economic Commission for Latin America and the Caribbean). The Economics of Climate Change in Latin America and the Caribbean: Paradoxes and Challenges; LC/L.3895/Rev.1; United Nations: Santiago, Chile, 2014. [Google Scholar]
- Stennett–Brown, R.K.; Stephenson, T.S.; Taylor, M.A. Caribbean climate change vulnerability: Lessons from an aggregate index approach. PLoS ONE 2019, 14, e0219250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbach, P.; Locatelli, B.; Zamora, J.C.; Fung, E.; Calderer, L.; Molina, L.; Ciais, P. Impacts of ClimateChange on Ecosystem Hydrological Services of Central America: Water Availability. In Climate Change Impacts on Tropical Forests in Central America: An Ecosystem Service Perspective; Aline, C., Ed.; Routledge Publishing: New York, NY, USA, 2015; pp. 65–90. ISBN 978-0-415-72080-9. [Google Scholar]
- Lennox, J.; Ramírez, D.; Olivares, J. Climate Change in Central America: Potential Impacts and Public Policy Options. Agricultural Development and Economics of Climate Change Unit of the ECLAC Subregional Headquarters in Mexico; LC/MEX/L.1196/Rev.1; United Nations: Mexico City, Mexico, 2018–2024. [Google Scholar]
- Lyra, A.A.; Imbach, P.; Rodriguez, D.A.; Chou, S.C.; Georgiou, S.; Garofolo, L. Projections of climate change impacts on central America tropical rainforest. Clim. Chang. 2016, 141, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Gohar, A.A.; Cashman, A. Modelling the impact of climate change and variability on water availability and economic likelihood: An example from the Caribbean. Wit Trans. Built Environ. 2015, 168, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Ribalaygua, J.; Gaitán, E.; Pórtoles, J.; Monjo, R. Climatic change on the Gulf of Fonseca (Central America) using two–step statistical downscaling of CMIP5 model outputs. Theor. Appl. Clim. 2017, 132, 867–883. [Google Scholar] [CrossRef]
- Angeles–Malaspina, M.; Gonzalez, J.; Ramírez–Beltrán, N. Projections of Heat Waves Events in the Intra–Americas Region Using Multimodel Ensemble. Adv. Meteorol. 2018, 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Quesada, A.M.; Sorí, R.; Ordoñez, P.; Gimeno, L. Climate Perspectives in the Intra–Americas Seas. Atmosphere 2020, 11, 959. https://doi.org/10.3390/atmos11090959
Durán-Quesada AM, Sorí R, Ordoñez P, Gimeno L. Climate Perspectives in the Intra–Americas Seas. Atmosphere. 2020; 11(9):959. https://doi.org/10.3390/atmos11090959
Chicago/Turabian StyleDurán-Quesada, Ana María, Rogert Sorí, Paulina Ordoñez, and Luis Gimeno. 2020. "Climate Perspectives in the Intra–Americas Seas" Atmosphere 11, no. 9: 959. https://doi.org/10.3390/atmos11090959
APA StyleDurán-Quesada, A. M., Sorí, R., Ordoñez, P., & Gimeno, L. (2020). Climate Perspectives in the Intra–Americas Seas. Atmosphere, 11(9), 959. https://doi.org/10.3390/atmos11090959