Climatological Large-Scale Circulation Patterns over The Middle Americas Region
Abstract
:1. Introduction
2. Data and Methods
2.1. SOM Method
2.2. Persistence and Transitions of Weather Types
3. Results and Discussion
3.1. Synoptic Analysis
3.2. Monthly Frequency and Persistence of Weather Types
3.3. Transitions of Weather Types
3.4. Caribbean Low Level Jet Interactions
3.5. The North American Monsoon System and the Mid-Summer Drought
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
WT | Weather Type |
NASH | North Atlantic Subtropical High |
NPH | North Pacific High |
US | United States of America |
SOM | Self-Organizing Maps |
SST | Sea-Surface Temperature |
MAR | Middle Americas Region |
MSLP | Mean-Sea-Level Pressure |
ERAI | ERA Interim |
ECMWF | European Centre for Medium-Range Weather Forecasts |
T2m | Temperature at 2 m |
CHIRP | Climate Hazards InfraRed Precipitation |
NAMS | North American Monsoon System |
MSD | Mid-Summer Drought |
ITCZ | Intertropical Convergence Zone |
CLLJ | Caribbean Low Level Jet |
NCL | NCAR Command Language |
UNAM | Universidad Nacional Autónoma de México |
CONACyT | Mexican National Council for Science and Technology |
PAPIIT | Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica |
References
- AMS Glossary Synoptic Climatology. Available online: http://glossary.ametsoc.org/wiki (accessed on 20 May 2020).
- Cassano, J.J.; Uotila, P.; Lynch, A. Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int. J. Climatol. 2006, 26, 1027–1049. [Google Scholar] [CrossRef]
- Lamb, H. British Isles weather types and a register of daily sequence of circulation patterns 1861–1971. Geophys. Mem. 1972, 116, 85. [Google Scholar]
- Kirchhofer, W. Classification of European 500 mb Patterns; Swiss Meteorological Institute: Zurich, Switzerland, 1974. [Google Scholar]
- Kalkstein, L.S.; Corrigan, P. A synoptic climatological approach for geographical analysis: Assessment of sulfur dioxide concentrations. Ann. Assoc. Am. Geogr. 1986, 76, 381–395. [Google Scholar] [CrossRef]
- Huth, R. A circulation classification scheme applicable in GCM studies. Theor. Appl. Climatol. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Muñoz, Á.G.; Yang, X.; Vecchi, G.A.; Robertson, A.W.; Cooke, W.F. A weather-type-based cross-time-scale diagnostic framework for coupled circulation models. J. Clim. 2017, 30, 8951–8972. [Google Scholar] [CrossRef]
- Vautard, R. Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Weather Rev. 1990, 118, 2056–2081. [Google Scholar] [CrossRef]
- Robertson, A.W.; Ghil, M. Large-scale weather regimes and local climate over the western United States. J. Clim. 1999, 12, 1796–1813. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselỳ, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef] [PubMed]
- Kohonen, T. Self-Organizing Maps; Springer Series in Information Sciences; Springer: Berlin/Heidelberg, Germany, 2001; Volume 30. [Google Scholar]
- Bárdossy, A.; Stehlík, J.; Caspary, H.J. Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules. Clim. Res. 2002, 23, 11–22. [Google Scholar] [CrossRef]
- Sinclair, K.; Bertler, N.; Trompetter, W. Synoptic controls on precipitation pathways and snow delivery to high-accumulation ice core sites in the Ross Sea region, Antarctica. J. Geophys. Res. Atmos. 2010, 115, D22112. [Google Scholar] [CrossRef]
- Markle, B.; Bertler, N.; Sinclair, K.; Sneed, S. Synoptic variability in the Ross Sea region, Antarctica, as seen from back-trajectory modeling and ice core analysis. J. Geophys. Res. Atmos. 2012, 117, D2. [Google Scholar] [CrossRef]
- Coggins, J.H.; McDonald, A.J.; Jolly, B. Synoptic climatology of the Ross Ice Shelf and Ross Sea region of Antarctica: K-means clustering and validation. Int. J. Climatol. 2014, 34, 2330–2348. [Google Scholar] [CrossRef]
- Neal, R.; Fereday, D.; Crocker, R.; Comer, R.E. A flexible approach to defining weather patterns and their application in weather forecasting over Europe. Meteorol. Appl. 2016, 23, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Cavazos, T. Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. J. Clim. 1999, 12, 1506–1523. [Google Scholar] [CrossRef]
- Hewitson, B.; Crane, R. Self-organizing maps: Applications to synoptic climatology. Clim. Res. 2002, 22, 13–26. [Google Scholar] [CrossRef]
- Crimmins, M.A. Synoptic climatology of extreme fire-weather conditions across the southwest United States. Int. J. Climatol. 2006, 26, 1001–1016. [Google Scholar] [CrossRef]
- Jáuregui, E. Variaciones de largo periodo de los tipos de tiempo de superficie en México. Boletín Inst. Geogr. UNAM 1971, 4, 9–22. [Google Scholar] [CrossRef]
- Mosiño, P. Una clasificación de las configuraciones del flujo aéreo en la República Mexicana. Rev. Ing. Hidraul. 1958, 12, 29–54. [Google Scholar]
- Adams, D.K.; Comrie, A.C. The north American monsoon. Bull. Am. Meteorol. Soc. 1997, 78, 2197–2214. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.J.; Garfin, G.M.; Wilder, M.; Vásquez-León, M.; Lenart, M.; Comrie, A.C. Applications of monsoon research: Opportunities to inform decision making and reduce regional vulnerability. J. Clim. 2007, 20, 1608–1627. [Google Scholar] [CrossRef] [Green Version]
- Vera, C.; Higgins, W.; Amador, J.; Ambrizzi, T.; Garreaud, R.; Gochis, D.; Gutzler, D.; Lettenmaier, D.; Marengo, J.; Mechoso, C.; et al. Toward a unified view of the American monsoon systems. J. Clim. 2006, 19, 4977–5000. [Google Scholar] [CrossRef]
- Magaña, V.; Amador, J.A.; Medina, S. The midsummer drought over Mexico and Central America. J. Clim. 1999, 12, 1577–1588. [Google Scholar] [CrossRef]
- Díaz-Esteban, Y.; Raga, G.B. Weather regimes associated with summer rainfall variability over southern Mexico. Int. J. Climatol. 2018, 38, 169–186. [Google Scholar] [CrossRef]
- Wang, C. Variability of the Caribbean low-level jet and its relations to climate. Clim. Dyn. 2007, 29, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.H.; Vizy, E.K. Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Clim. 2010, 23, 1477–1494. [Google Scholar] [CrossRef]
- Muñoz, E.; Busalacchi, A.J.; Nigam, S.; Ruiz-Barradas, A. Winter and summer structure of the Caribbean low-level jet. J. Clim. 2008, 21, 1260–1276. [Google Scholar] [CrossRef]
- Mo, K.C.; Chelliah, M.; Carrera, M.L.; Higgins, R.W.; Ebisuzaki, W. Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydrometeorol. 2005, 6, 710–728. [Google Scholar] [CrossRef]
- Sáenz, F.; Durán-Quesada, A.M. A climatology of low level wind regimes over Central America using a weather type classification approach. Front. Earth Sci. 2015, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Moron, V.; Gouirand, I.; Taylor, M. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature. Clim. Dyn. 2016, 47, 601–621. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992. [Google Scholar]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Simmons, A. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl. 2006, 110, 25–36. [Google Scholar]
- Simmons, A.; Uppala, S.; Dee, D. Update on ERAInterim; ECMWF Newsletter, No. 111; ECMWF: Reading, UK, 2007; Volume 5. [Google Scholar]
- Uppala, S.; Dee, D.; Kobayashi, S.; Berrisford, P.; Simmons, A. Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsl. 2008, 115, 12–18. [Google Scholar]
- Serra, Y.L.; Kiladis, G.N.; Hodges, K.I. Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Clim. 2010, 23, 4823–4840. [Google Scholar] [CrossRef]
- Lackmann, G. Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting; American Meteorological Society: Boston, MA, USA, 2011. [Google Scholar]
- Jones, P.; Hulme, M.; Briffa, K. A comparison of Lamb circulation types with an objective classification scheme. Int. J. Climatol. 1993, 13, 655–663. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.C.; Kiem, A.S. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall. Hydrol. Earth Syst. Sci. 2009, 13, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.; Nigam, S. Weighting of geophysical data in principal component analysis. J. Geophys. Res. Atmos. 1999, 104, 16925–16928. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Reusch, D.B.; Hewitson, B.C.; Alley, R.B. Towards ice-core-based synoptic reconstructions of west antarctic climate with artificial neural networks. Int. J. Climatol. A J. R. Meteorol. Soc. 2005, 25, 581–610. [Google Scholar] [CrossRef]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. SOM Toolbox for Matlab 5; Helsinki University of Technology: Helsinki, Finland, 2000. [Google Scholar]
- Cavazos, T.; Comrie, A.C.; Liverman, D.M. Intraseasonal Variability Associated with Wet Monsoons in Southeast Arizona. J. Clim. 2002, 15, 2477–2490. [Google Scholar] [CrossRef]
- Vautard, R.; Mo, K.C.; Ghil, M. Statistical significance test for transition matrices of atmospheric Markov chains. J. Atmos. Sci. 1990, 47, 1926–1931. [Google Scholar] [CrossRef]
- Kimoto, M.; Ghil, M. Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci. 1993, 50, 2645–2673. [Google Scholar] [CrossRef] [Green Version]
- Kondrashov, D.; Ide, K.; Ghil, M. Weather regimes and preferred transition paths in a three-level quasigeostrophic model. J. Atmos. Sci. 2004, 61, 568–587. [Google Scholar] [CrossRef] [Green Version]
- Bograd, S.; Schwing, F.; Mendelssohn, R.; Green-Jessen, P. On the changing seasonality over the North Pacific. Geophys. Res. Lett. 2002, 29, 47-1–47-4. [Google Scholar] [CrossRef]
- Romero-Centeno, R.; Zavala-Hidalgo, J.; Raga, G. Midsummer gap winds and low-level circulation over the eastern tropical Pacific. J. Clim. 2007, 20, 3768–3784. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.J.; Nigam, S. Variability of the Great Plains Low-Level Jet: Large-Scale Circulation Context and Hydroclimate Impacts. J. Clim. 2008, 21, 1532–1551. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, W.; Kushnir, Y. Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Clim. Dyn. 2012, 39, 1401–1412. [Google Scholar] [CrossRef] [Green Version]
- Roller, C.D.; Qian, J.H.; Agel, L.; Barlow, M.; Moron, V. Winter weather regimes in the northeast United States. J. Clim. 2016, 29, 2963–2980. [Google Scholar] [CrossRef]
- Hidalgo León, H.G.; Alfaro Martínez, E.J.; Amador Astúa, J.A.; Bastidas Pacheco, Á. Precursors of quasi-decadal dry-spells in the Central America Dry Corridor. Clim. Dyn. 2019, 53, 1307–1322. [Google Scholar] [CrossRef]
WT | U-SOM | U-Wang | Pcp-SOM | Pcp-Wang | Month |
---|---|---|---|---|---|
# | m s−1 | m s−1 | mm day−1 | mm day−1 | |
WT20 | −9.0 | −10.5 | 0.9 | 0.7 | January |
WT5 | −11.6 | −12.0 | 1.94 | 2.4 | July |
WT9 | −9.7 | −9.0 | 1.7 | 2.4 | May |
WT6 | −5.0 | −6.5 | 4.28 | 4.5 | October |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa-Moya, C.A.; Cala-Pérez, Y.A.; Díaz-Esteban, Y.; Castro, C.L.; Ordoñez-Peréz, P.; Quintanar, A.I. Climatological Large-Scale Circulation Patterns over The Middle Americas Region. Atmosphere 2020, 11, 745. https://doi.org/10.3390/atmos11070745
Ochoa-Moya CA, Cala-Pérez YA, Díaz-Esteban Y, Castro CL, Ordoñez-Peréz P, Quintanar AI. Climatological Large-Scale Circulation Patterns over The Middle Americas Region. Atmosphere. 2020; 11(7):745. https://doi.org/10.3390/atmos11070745
Chicago/Turabian StyleOchoa-Moya, Carlos A., Yoel A. Cala-Pérez, Yanet Díaz-Esteban, Christopher L. Castro, Paulina Ordoñez-Peréz, and Arturo I. Quintanar. 2020. "Climatological Large-Scale Circulation Patterns over The Middle Americas Region" Atmosphere 11, no. 7: 745. https://doi.org/10.3390/atmos11070745
APA StyleOchoa-Moya, C. A., Cala-Pérez, Y. A., Díaz-Esteban, Y., Castro, C. L., Ordoñez-Peréz, P., & Quintanar, A. I. (2020). Climatological Large-Scale Circulation Patterns over The Middle Americas Region. Atmosphere, 11(7), 745. https://doi.org/10.3390/atmos11070745