C3 and C4 Grass Species: Who Can Reduce Soil Nitrous Oxide Emissions in a Continental Arid Region?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate and Soil
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Nitrous Oxide (N2O)
2.3.2. Forage Yield and Soil Property
2.4. Statistical Analysis
3. Results
3.1. Soil N2O Emission in Barley, Rye, Corngrass, and SHS
3.2. Soil N2O Emission in Relation to Soil Property
3.3. Soil N2O Emission and Forage Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, F.; Nan, Z.; Ren, J. Integrated crop-livestock production system. Acta Prataculturae Sin. 2009, 18, 211–234. [Google Scholar]
- China Agriculture Yearbook Editorial Board. China Agriculture Yearbook; China Agriculture Publishing House: Beijing, China, 2011. [Google Scholar]
- Kobayashi, N.; Hou, F.; Tsunekawa, A.; Chen, X.; Yan, T.; Ichinohe, T. Effects of substituting alfalfa hay for concentrate on energy utilization and feeding cost of crossbred simmental male calves in Gansu province, China. Grassl. Sci. 2017, 63, 245–254. [Google Scholar] [CrossRef]
- Venuto, B.; Kindiger, B. Forage and biomass feedstock production from hybrid forage sorghum and sorghum-sudangrass hybrids. Grassl. Sci. 2008, 54, 189–196. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A. Forage yield, growth rate, and nitrogen uptake of faba bean intercrops with wheat, barley, and rye in three seeding ratios. Crop Sci. 2010, 50, 2148–2158. [Google Scholar] [CrossRef]
- Perry, M.; Emily, G.; Jeff, H.; Richard, E. Pea and barley forage as fallow replacement for dryland wheat production. Agron. J. 2018, 110, 833–842. [Google Scholar]
- Bowatte, S.; Newton, P.C.D.; Theobald, P.; Brock, S.; Chris, H. Emissions of nitrous oxide from the leaves of grasses. Plant Soil 2014, 374, 275–283. [Google Scholar] [CrossRef]
- Sage, R.F.; Zhu, X.G. Exploiting the engine of C4 photosynthesis. J. Exp. Bot. 2011, 62, 2989–3000. [Google Scholar] [CrossRef] [Green Version]
- Haile, S.G.; Nair, V.D.; Nair, P.K.R. Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob. Chang. Biol. 2010, 16, 427–438. [Google Scholar] [CrossRef]
- Xia, J.; Ren, J.; Zhang, S.; Wang, Y.; Fang, Y. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the yellow river delta, China. Geoderma 2019, 349, 25–35. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Hillier, J.; Brentrup, F.; Wattenbach, M.; Walter, C.; Garcia-Suarez, T.; Mila-I-Canals, L. Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil-specific predictions from integrated empirical models. Glob. Chang. Biol. 2012, 18, 1880–1894. [Google Scholar] [CrossRef]
- IPCC. Climate change 2007: Synthesis report. In Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; pp. 13–42. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Chem. Erde-Geochem. 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Kitzler, B.; Zechmeister-Boltenstern, S.; Holtermann, C.; Skiba, U.; Butterbach-Bahl, K. Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences 2006, 3, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Di, H.J.; Cameron, K.C. Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: A review. J. Soils Sediments 2016, 16, 1401–1420. [Google Scholar] [CrossRef]
- Abalos, D.; Deyn, D.; Kuyper, T.W.; Van Groenigen, J.W. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Glob. Chang. Biol. 2014, 20, 265–275. [Google Scholar] [CrossRef]
- Abalos, D.; Groenigen, J.W.; De Deyn, G.B. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? Glob. Chang. Biol. 2018, 24, e248–e258. [Google Scholar] [CrossRef]
- Fu, S.; Cheng, W.; Susfalk, R. Rhizosphere respiration varies with plant species and phenology: A greenhouse pot experiment. Plant Soil 2002, 239, 133–140. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, W. 13C isotope fractionation during rhizosphere respiration of C3 and C4 plants. Plant Soil 2011, 342, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Fassbinder, J.J.; Griffis, T.J.; Baker, J.M. Interannual, seasonal, and diel variability in the carbon isotope composition of respiration in a C3/C4 agricultural ecosystem. Agric. For. Meteorol. 2012, 153, 144–153. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adviento-Borbe, M.A.A.; Doran, J.W.; Drijber, R.A.; Dobermann, A. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. J. Environ. Qual. 2006, 35, 1999–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, N.; Crohn, D.M. Effects of soil salinity and carbon availability from organic amendments on nitrous oxide emissions. Geoderma 2014, 235, 363–371. [Google Scholar] [CrossRef]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [Green Version]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; Van Groenigen, K.J.; Van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Venterea, R.T.; Hyatt, C.R.; Rosen, C.J. Fertilizer management effects on nitrate leaching and indirect nitrous oxide emissions in irrigated potato production. J. Environ. Qual. 2010, 40, 1103–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Ju, X.T.; Meng, Q.F.; Cui, Z.L.; Christie, P.; Chen, X.P.; Zhang, F.S. The impact of alternative cropping systems on global warming potential, grain yield and groundwater use. Agric. Ecosyst. Environ. 2015, 203, 46–54. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Matthew, C.; Wood, B.; Hou, F. Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau. Sci. Rep. 2017, 7, 40857. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.; He, X.Z.; Hou, F.; Lou, S.; Chen, X.; Chang, S.; Zhang, C.; Zhu, W. Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region. PeerJ 2020, 8, e8738. [Google Scholar] [CrossRef]
- Dyer, J.A.; Vergé, X.P.C.; Desjardins, R.L.; Worth, D.E. The protein-based GHG emission intensity for livestock products in Canada. J. Sustain. Agric. 2010, 34, 618–629. [Google Scholar] [CrossRef]
- Schuman, G.E.; Stanley, M.A.; Knudsen, D. Automated total nitrogen analysis of soil and plant samples. Soil Sci. Soc. Am. J. 1973, 37, 480–481. [Google Scholar] [CrossRef]
- Risk, N.; Snider, D.; Wagner-Riddle, C. Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles. Can. J. Soil Sci. 2013, 93, 401–414. [Google Scholar] [CrossRef]
- Nelson, D.; Sommers, L. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 3: Chemical Methods, Soil Science Society of America Book Series, Number 5; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- McLean, E. Soil pH and Lime Requirement. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; pp. 17–44. [Google Scholar]
- De Vries, F.T.; Bardgett, R.D. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 2010, 210, 861–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mommer, L.; Visser, E.J.W.; Ruijven, J.; Caluwe, H.; Pierik, R.; Kroon, H. Contrasting root behavior in two grass species: A test of functionality in dynamic heterogeneous conditions. Plant Soil 2011, 344, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Hüppi, R.; Neftel, A.; Lehmann, M.F.; Krauss, M.; Six, J.; Leifeld, J. N use efficiencies and N2O emissions in two contrasting, biochar amended soils under winter wheat-cover crop-sorghum rotation. Environ. Res. Lett. 2016, 11, 084013. [Google Scholar] [CrossRef] [Green Version]
- Schwenke, G.D.; Haigh, B.M. The interaction of seasonal rainfall and nitrogen fertiliser rate on soil N2O emission, total N loss and crop yield of dryland sorghum and sunflower grown on sub-tropical vertosols. Soil Res. 2016, 54, 604–618. [Google Scholar] [CrossRef]
- Liu, X.; Shen, Y. Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: A case study of the Heihe river basin, China. Earth Syst. Dyn. 2018, 9, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Rubio, G.; Boem, F.H.G.; Lavado, R.S. Responses of C3 and C4 grasses to application of nitrogen and phosphorus fertilizer at two dates in the spring. Grass Forage Sci. 2010, 65, 102–109. [Google Scholar] [CrossRef]
- Wang, H.; Beule, L.; Zang, H.; Pfeiffer, B.; Dittert, K. Growing grass reduces soil N2O emissions and stimulates proliferation of denitrifying bacteria. Sci. Total Environ. 2020, 18, 136778. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions. Rev. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.; Wang, X.; Mu, Y.; Ouyang, Z.; Zhang, H. Nitrous oxide emissions from winter wheat field in the loess plateau. Acta Ecol. Sin. 2011, 31, 1896–1903. [Google Scholar]
- Schindlbacher, A.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J. Geophys. Res. Atmos. 2004, 109, 17302. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Kim, D.G.; Vargas, R.; Bond-Lamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.; Adviento-Borbe, M.A.; Van Kessel, C.; Hill, J.E.; Linquist, B.A. Optimizing rice yields while minimizing yield-scaled global warming potential. Glob. Chang. Biol. 2014, 20, 1382–1393. [Google Scholar] [CrossRef]
Items | 2016 | 2017 | ||
---|---|---|---|---|
C3 | C4 | C3 | C4 | |
N2O flux measurement | 21–23 May 20–22 June 18–20 July 21–23 August 25–27 September | 21–23 May 20–22 June 18–20 July 21–23 August 25–27 September | 25–27 May 26–28 June 19–21 July 21–23 August 27–29 September | 25–27 May 26–28 June 19–21 July 21–23 August 27–29 September |
Irrigation | 28 June 10 August | 28 June 10 August | 30 June 12 August | 30 June 12 August |
Harvest | 26 July 24 August 26 September | 20 July 17 August 20 September | 28 July 25 August 28 September | 23 July 20 August 22 September |
Species | Intercept | Slope | R2 | F(1,28) | P | Intercept | Slope | R2 | F(1,28) | P |
---|---|---|---|---|---|---|---|---|---|---|
ST | SWC | |||||||||
Barley | −0.15 | 0.91 a | 0.6856 | 61.05 | <0.0001 | 45.00 | −0.94 a | 0.8154 | 123.71 | <0.0001 |
Rye | −1.24 | 0.98 a | 0.7377 | 78.75 | <0.0001 | 42.73 | −0.89 a | 0.7083 | 68.00 | <0.0001 |
Corngrass | −2.17 | 1.17 a | 0.7522 | 85.00 | <0.0001 | 42.83 | −0.86 a | 0.7434 | 81.11 | <0.0001 |
SHS | −3.03 | 1.23 a | 0.7375 | 78.67 | <0.0001 | 44.86 | −0.88 a | 0.6087 | 43.56 | <0.0001 |
SOC | SpH | |||||||||
Barley | −98.78 | 12.30 a | 0.1203 | 3.83 | 0.0604 | −164.39 | 23.46 a | 0.6209 | 45.68 | <0.0001 |
Rye | −150.96 | 17.56 a | 0.4184 | 20.14 | 0.0001 | −159.61 | 22.74 a | 0.7868 | 103.30 | <0.0001 |
Corngrass | −197.85 | 23.03 a | 0.2747 | 10.60 | 0.0030 | −164.64 | 23.67 a | 0.6291 | 47.49 | <0.0001 |
SHS | −63.57 | 19.30 a | 0.4734 | 25.17 | <0.0001 | −162.71 | 23.61 a | 0.7095 | 68.39 | <0.0001 |
SAN | STN | |||||||||
Barley | −7.90 | 0.56 b | 0.8181 | 125.96 | <0.0001 | −15.90 | 24.78 a | 0.3444 | 14.71 | 0.0007 |
Rye | −13.02 | 0.71 ab | 0.6806 | 59.66 | <0.0001 | −21.17 | 30.36 a | 0.3899 | 17.90 | 0.0002 |
Corngrass | −9.60 | 0.61 ab | 0.8651 | 79.31 | <0.0001 | −10.32 | 22.07 a | 0.2064 | 7.20 | 0.0121 |
SHS | −15.64 | 0.83 a | 0.7490 | 83.56 | <0.0001 | −20.39 | 33.08 a | 0.2845 | 11.13 | 0.0024 |
Species | Intercept | Slope | R2 | F(1,28) | P | Intercept | Slope | R2 | F(1,58) | P |
---|---|---|---|---|---|---|---|---|---|---|
ST | SWC | |||||||||
C3 | −0.51 | 0.88 b | 0.6937 | 131.33 | <0.0001 | 43.96 | −0.92 a | 0.7604 | 194.01 | <0.0001 |
C4 | −2.63 | 1.20 a | 0.7448 | 169.30 | <0.0001 | 43.70 | −0.86 a | 0.6609 | 113.03 | <0.0001 |
SOC | SpH | |||||||||
C3 | −117.47 | 14.15 a | 0.2254 | 16.88 | <0.0001 | −162.10 | 23.11 a | 0.7026 | 137.00 | <0.0001 |
C4 | −169.18 | 19.93 a | 0.3810 | 35.70 | <0.0001 | −162.86 | 23.51 a | 0.6645 | 114.87 | <0.0001 |
SAN | STN | |||||||||
C3 | −9.40 | 0.61 a | 0.7400 | 165.08 | <0.0001 | −16.03 | 25.42 a | 0.3555 | 31.99 | <0.0001 |
C4 | −10.06 | 0.66 a | 0.7315 | 158.04 | <0.0001 | −9.91 | 22.39 a | 0.1878 | 19.41 | 0.0005 |
Species | Factor | df | Type I SS | Contribution (%) | F | P |
---|---|---|---|---|---|---|
C3 | SAN | 1 | 1971.21 | 74.00 | 352.00 | <0.0001 |
SWC | 1 | 325.30 | 12.21 | 58.09 | <0.0001 | |
ST | 1 | 53.90 | 2.02 | 9.59 | 0.0031 | |
Error | 56 | 313.60 | 11.77 | |||
Final model: N2O flux = 10.06 + 0.30 AN − 0.38 SWC + 0.26 ST (R2 = 0.8823) | ||||||
C4 | SAN | 1 | 2157.26 | 73.15 | 238.93 | <0.0001 |
ST | 1 | 277.07 | 9.40 | 30.69 | <0.0001 | |
Error | 57 | 514.64 | 17.45 | |||
Final model: N2O flux = −9.11 + 0.36 AN + 0.69 ST (R2 = 0.8255) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; He, X.Z.; Hou, F. C3 and C4 Grass Species: Who Can Reduce Soil Nitrous Oxide Emissions in a Continental Arid Region? Atmosphere 2020, 11, 958. https://doi.org/10.3390/atmos11090958
Ning J, He XZ, Hou F. C3 and C4 Grass Species: Who Can Reduce Soil Nitrous Oxide Emissions in a Continental Arid Region? Atmosphere. 2020; 11(9):958. https://doi.org/10.3390/atmos11090958
Chicago/Turabian StyleNing, Jiao, Xiong Z. He, and Fujiang Hou. 2020. "C3 and C4 Grass Species: Who Can Reduce Soil Nitrous Oxide Emissions in a Continental Arid Region?" Atmosphere 11, no. 9: 958. https://doi.org/10.3390/atmos11090958
APA StyleNing, J., He, X. Z., & Hou, F. (2020). C3 and C4 Grass Species: Who Can Reduce Soil Nitrous Oxide Emissions in a Continental Arid Region? Atmosphere, 11(9), 958. https://doi.org/10.3390/atmos11090958