Flow Regimes and Föhn Types Characterize the Local Climate of Southern Patagonia
Abstract
:1. Introduction
2. Data and Methods
2.1. Meteorological Data
2.1.1. Observational Data
2.1.2. Reanalysis Data
2.2. Föhn Identification Algorithm
- θlee + Ofs > θmountain
- 2.
- 200°/220° < Dir < 320°
- RH decrease ≥ 14%/18% over 5 h
- RH < 10th percentile
- RH < 15th percentile and T increase ≥ 3.0 K/3.5 K over 5 h
2.3. WRF Model and Setup
3. Results
3.1. Föhn Identification
3.2. Model Evaluation
3.3. Flow Regimes and Atmospheric Response
3.3.1. Supercritical Case
3.3.2. Transition Case
3.3.3. Subcritical Case
3.3.4. Comparison
3.4. Flow Regime Climatology
4. Discussion
4.1. Classification into Föhn Types
4.2. Implications for Glacier Surface Energy and Mass Balances
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Braun, M.H.; Malz, P.; Sommer, C.; Farías-Barahona, D.; Sauter, T.; Casassa, G.; Soruco, A.; Skvarca, P.; Seehaus, T.C. Constraining glacier elevation and mass changes in South America. Nat. Clim. Change 2019, 9, 130–136. [Google Scholar] [CrossRef]
- Schaefer, M.; Machguth, H.; Falvey, M.; Casassa, G. Modeling past and future surface mass balance of the Northern Patagonia Icefield. J. Geophys. Res. Earth Surf. 2013, 118, 571–588. [Google Scholar] [CrossRef] [Green Version]
- Mernild, S.H.; Liston, G.E.; Hiemstra, C.; Wilson, R. The Andes Cordillera. Part III: Glacier surface mass balance and contribution to sea level rise (1979–2014). Int. J. Climatol. 2017, 37, 3154–3174. [Google Scholar] [CrossRef]
- Garreaud, R.; Lopez, P.; Minvielle, M.; Rojas, M. Large-Scale Control on the Patagonian Climate. J. Clim. 2013, 26, 215–230. [Google Scholar] [CrossRef]
- Elvidge, A.D.; Kuipers Munneke, P.; King, J.C.; Renfrew, I.A.; Gilbert, E. Atmospheric drivers of melt on Larsen C Ice Shelf: Surface energy budget regimes and the impact of foehn. J. Geophys. Res. Atmos. 2020. [Google Scholar] [CrossRef]
- Schneider, C.; Glaser, M.; Kilian, R.; Santana, A.; Butorovic, N.; Casassa, G. Weather Observations across the Southern Andes At 53° S. Phys. Geogr. 2003, 24, 97–119. [Google Scholar] [CrossRef]
- Speirs, J.C.; Steinhoff, D.F.; McGowan, H.A.; Bromwich, D.H.; Monaghan, A.J. Foehn Winds in the McMurdo Dry Valleys, Antarctica: The Origin of Extreme Warming Events. J. Clim. 2010, 23, 3577–3598. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.V.; Kirchgaessner, A.; Ross, A.N.; King, J.C. The spatial distribution and temporal variability of föhn winds over the Larsen C ice shelf, Antarctica. Q. J. R. Meteorol. Soc. 2018, 144, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Wiesenekker, J.; Kuipers Munneke, P.; van den Broeke, M.; Smeets, C. A Multidecadal Analysis of Föhn Winds over Larsen C Ice Shelf from a Combination of Observations and Modeling. Atmosphere 2018, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Sauter, T. Revisiting extreme precipitation amounts over southern South America and implications for the Patagonian Icefields. Hydrol. Earth Syst. Sci. 2020, 24, 2003–2016. [Google Scholar] [CrossRef] [Green Version]
- Weidemann, S.; Sauter, T.; Schneider, L.; Schneider, C. Impact of two conceptual precipitation downscaling schemes on mass-balance modeling of Gran Campo Nevado ice cap, Patagonia. J. Glaciol. 2013, 59, 1106–1116. [Google Scholar] [CrossRef] [Green Version]
- King, J.C.; Kirchgaessner, A.; Bevan, S.; Elvidge, A.D.; Kuipers Munneke, P.; Luckman, A.; Orr, A.; Renfrew, I.A.; van den Broeke, M.R. The Impact of Föhn Winds on Surface Energy Balance during the 2010–2011 Melt Season Over Larsen C Ice Shelf, Antarctica. J. Geophys. Res. Atmos. 2017, 122, 12062–12076. [Google Scholar] [CrossRef]
- Bannister, D.; King, J. Föhn winds on South Georgia and their impact on regional climate. Weather 2015, 70, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.V.; Kirchgaessner, A.; Ross, A.N.; King, J.C.; Kuipers Munneke, P. The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica. Cryosphere 2020. [Google Scholar] [CrossRef]
- Sauter, T.; Galos, S.P. Effects of Local Advection on the Spatial Sensible Heat Flux Variation on a Mountain Glacier. Cryosphere 2016, 10, 2887–2905. [Google Scholar] [CrossRef] [Green Version]
- Gohm, A.; Mayr, G.J. Hydraulic aspects of föhn winds in an Alpine valley. Q. J. R. Meteorol. Soc. 2004, 130, 449–480. [Google Scholar] [CrossRef]
- Gohm, A.; Zängl, G.; Mayr, G.J. South Foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): Verification of High-Resolution Numerical Simulations with Observations. Mon. Weather Rev. 2004, 132, 78–102. [Google Scholar] [CrossRef]
- Armi, L.; Mayr, G.J. Continuously stratified flows across an Alpine crest with a pass: Shallow and deep föhn. Q. J. R. Meteorol. Soc. 2007, 133, 459–477. [Google Scholar] [CrossRef]
- Gohm, A.; Mayr, G.J.; Fix, A.; Giez, A. On the onset of bora and the formation of rotors and jumps near a mountain gap. Q. J. R. Meteorol. Soc. 2008, 134, 21–46. [Google Scholar] [CrossRef] [Green Version]
- McGowan, H.A.; Sturman, A.P. Regional and local scale characteristics of foehn wind events over the South Island of New Zealand. Meteorol. Atmos. Phys. 1996, 58, 151–164. [Google Scholar] [CrossRef]
- McGowan, H.A.; Sturman, A.P.; Kossmann, M.; Zawar-Reza, P. Observations of foehn onset in the Southern Alps, New Zealand. Meteorol. Atmos. Phys. 2002, 79, 215–230. [Google Scholar] [CrossRef]
- Cape, M.R.; Vernet, M.; Skvarca, P.; Marinsek, S.; Scambos, T.; Domack, E. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmos. 2015, 120, 11037–11057. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R. The Andes climate and weather. Adv. Geosci. 2009, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Norte, F.A. Understanding and Forecasting Zonda Wind (Andean Foehn) in Argentina: A Review. ACS 2015, 5, 163–193. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, A.D.; Renfrew, I.A. The Causes of Foehn Warming in the Lee of Mountains. Bull. Am. Meteorol. Soc. 2016, 97, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Richner, H.; Hächler, P. Understanding and Forecasting Alpine Foehn. In Mountain Weather Research and Forecasting; Chow, F.K., de Wekker, S.F.J., Snyder, B.J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 219–260. ISBN 978-94-007-4097-6. [Google Scholar]
- Seluchi, M.E.; Norte, F.A.; Satyamurty, P.; Chan Chou, S. Analysis of Three Situations of the Foehn Effect over the Andes (Zonda Wind) Using the Eta-CPTEC Regional Model. Weather Forecast. 2003, 18, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L. Mesoscale Dynamics; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780511619649. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4. Environ. Sci. 2019. [Google Scholar] [CrossRef]
- Schaefer, M.; Machguth, H.; Falvey, M.; Casassa, G.; Rignot, E. Quantifying mass balance processes on the Southern Patagonia Icefield. Cryosphere 2015, 9, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, J.T.M.; van den Broeke, M.R.; van Wessem, J.M.; van de Berg, W.J.; van Meijgaard, E.; van Ulft, L.H.; Schaefer, M. Extreme Precipitation and Climate Gradients in Patagonia Revealed by High-Resolution Regional Atmospheric Climate Modeling. J. Clim. 2014, 27, 4607–4621. [Google Scholar] [CrossRef]
- Villarroel, C.; Carrasco, J.F.; Casassa, G.; Falvey, M. Modeling Near-Surface Air Temperature and Precipitation Using WRF with 5-km Resolution in the Northern Patagonia Icefield: A Pilot Simulation. IJG 2013, 4, 1193–1199. [Google Scholar] [CrossRef] [Green Version]
- Durre, I.; Menne, M.J.; Gleason, B.E.; Houston, T.G.; Vose, R.S. Comprehensive Automated Quality Assurance of Daily Surface Observations. J. Appl. Meteor. Clim. 2010, 49, 1615–1633. [Google Scholar] [CrossRef] [Green Version]
- Mölg, T.; Cullen, N.J.; Hardy, D.R.; Kaser, G.; Klok, L. Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int. J. Climatol. 2008, 28, 881–892. [Google Scholar] [CrossRef]
- Mölg, T.; Cullen, N.J.; Hardy, D.R.; Winkler, M.; Kaser, G. Quantifying Climate Change in the Tropical Midtroposphere over East Africa from Glacier Shrinkage on Kilimanjaro. J. Clim. 2009, 22, 4162–4181. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.-C.; Munoz-Sabater, J.; de Rosnay, P.; Balsamo, G. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 2018, 22, 3515–3532. [Google Scholar] [CrossRef] [Green Version]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Weidemann, S.S.; Arigony-Neto, J.; Jaña, R.; Netto, G.; Gonzalez, I.; Casassa, G.; Schneider, C. Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions. Geosciences 2020, 10, 272. [Google Scholar] [CrossRef]
- Bravo, C.; Bozkurt, D.; Gonzalez-Reyes, Á.; Quincey, D.J.; Ross, A.N.; Farías-Barahona, D.; Rojas, M. Assessing Snow Accumulation Patterns and Changes on the Patagonian Icefields. Front. Environ. Sci. 2019, 7, 1–18. [Google Scholar] [CrossRef]
- Weidemann, S.S.; Sauter, T.; Malz, P.; Jaña, R.; Arigony-Neto, J.; Casassa, G.; Schneider, C. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling. Front. Earth Sci. 2018, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, S.; Mayr, G.J. Objective Forecasting of Foehn Winds for a Subgrid-Scale Alpine Valley. Wea. Forecast. 2008, 23, 205–218. [Google Scholar] [CrossRef]
- Plavcan, D.; Mayr, G.J.; Zeileis, A. Automatic and Probabilistic Foehn Diagnosis with a Statistical Mixture Model. J. Appl. Meteor. Climatol. 2014, 53, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Vergeiner, J. South Foehn Studies and a New Foehn Classification Scheme in the Wipp and Inn Valley; University of Innsbruck: Innsbruck, Austria, 2004. [Google Scholar]
- Palese, C.; Cogliati, M. Viento Zonda Norpatagónico en Neuquén; Parte I: Detecctión; XXVII Reunión Científica de la Asociación Argentina de Geofísicos y Geodestas: San Juan, Argentina, 2015. [Google Scholar]
- Mayr, G.J.; Plavcan, D.; Armi, L.; Elvidge, A.; Grisogono, B.; Horvath, K.; Jackson, P.; Neururer, A.; Seibert, P.; Steenburgh, J.W.; et al. The Community Foehn Classification Experiment. Bull. Am. Meteorol. Soc. 2018, 99, 2229–2235. [Google Scholar] [CrossRef] [Green Version]
- Steinhoff, D.F.; Bromwich, D.H.; Speirs, J.C.; McGowan, H.A.; Monaghan, A.J. Austral summer foehn winds over the McMurdo dry valleys of Antarctica from Polar WRF. Q. J. R. Meteorol. Soc. 2014, 140, 1825–1837. [Google Scholar] [CrossRef] [Green Version]
- Datta, R.T.; Tedesco, M.; Fettweis, X.; Agosta, C.; Lhermitte, S.; Lenaerts, J.T.M.; Wever, N. The Effect of Foehn-Induced Surface Melt on Firn Evolution Over the Northeast Antarctic Peninsula. Geophys. Res. Lett. 2019, 46, 3822–3831. [Google Scholar] [CrossRef]
- Mölg, T.; Maussion, F.; Collier, E.; Chiang, J.C.H.; Scherer, D. Prominent Midlatitude Circulation Signature in High Asia’s Surface Climate during Monsoon. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Bonekamp, P.N.J.; de Kok, R.J.; Collier, E.; Immerzeel, W.W. Contrasting Meteorological Drivers of the Glacier Mass Balance Between the Karakoram and Central Himalaya. Front. Earth Sci. 2019, 7. [Google Scholar] [CrossRef]
- Bonekamp, P.N.J.; Collier, E.; Immerzeel, W.W. The Impact of Spatial Resolution, Land Use, and Spinup Time on Resolving Spatial Precipitation Patterns in the Himalayas. J. Hydrometeorol. 2018, 19, 1565–1581. [Google Scholar] [CrossRef] [Green Version]
- Mölg, T.; Maussion, F.; Yang, W.; Scherer, D. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 2012, 6, 1445–1461. [Google Scholar] [CrossRef] [Green Version]
- Collier, E.; Mölg, T.; Sauter, T. Recent Atmospheric Variability at Kibo Summit, Kilimanjaro, and Its Relation to Climate Mode Activity. J. Clim. 2018, 31, 3875–3891. [Google Scholar] [CrossRef]
- Elvidge, A.D.; Renfrew, I.A.; King, J.C.; Orr, A.; Lachlan-Cope, T.A.; Weeks, M.; Gray, S.L. Foehn jets over the Larsen C Ice Shelf, Antarctica. Q. J. R. Meteorol. Soc. 2015, 141, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Mayr, G.J.; Armi, L.; Gohm, A.; Zängl, G.; Durran, D.R.; Flamant, C.; Gaberšek, S.; Mobbs, S.; Ross, A.; Weissmann, M. Gap flows: Results from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 2007, 133, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Rögnvaldsson, Ó.; Bao, J.-W.; Ágústsson, H.; Ólafsson, H. Downslope windstorm in Iceland–WRF/MM5 model comparison. Atmos. Chem. Phys. 2011, 11, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Turton, J.V.; Kirchgaessner, A.; Ross, A.N.; King, J.C. Does high-resolution modelling improve the spatial analysis of föhn flow over the Larsen C Ice Shelf? Weather 2017, 72, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; García-Bustamante, E.; Navarro, J.; Vilà-Guerau de Arellano, J.; Muñoz-Roldán, A. An evaluation of WRF’s ability to reproduce the surface wind over complex terrain based on typical circulation patterns. J. Geophys. Res. Atmos. 2013, 118, 7651–7669. [Google Scholar] [CrossRef] [Green Version]
- Collier, E.; Immerzeel, W.W. High-resolution modeling of atmospheric dynamics in the Nepalese Himalaya. J. Geophys. Res. Atmos. 2015, 120, 9882–9896. [Google Scholar] [CrossRef]
- Turton, J.V.; Mölg, T.; Collier, E. High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018. Earth Syst. Sci. Data 2020, 12, 1191–1202. [Google Scholar] [CrossRef]
- Kirshbaum, D.; Adler, B.; Kalthoff, N.; Barthlott, C.; Serafin, S. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere 2018, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, A.D.; Renfrew, I.A.; King, J.C.; Orr, A.; Lachlan-Cope, T.A. Foehn warming distributions in nonlinear and linear flow regimes: A focus on the Antarctic Peninsula. Q. J. R. Meteorol. Soc. 2016, 142, 618–631. [Google Scholar] [CrossRef] [Green Version]
- Durran, D.R. Another Look at Downslope Windstorms. Part I: The Development of Analogs to Supercritical Flow in an Infinitely Deep, Continuously Stratified Fluid. J. Atmos. Sci. 1986, 43, 2527–2543. [Google Scholar] [CrossRef]
- Durran, D.R. Mountain Waves and Downslope Winds. In Atmospheric Processes over Complex Terrain; Banta, R.M., Berri, G., Blumen, W., Carruthers, D.J., Dalu, G.A., Durran, D.R., Egger, J., Garratt, J.R., Hanna, S.R., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 59–81. ISBN 978-1-935704-25-6. [Google Scholar]
- Mofidi, A.; Soltanzadeh, I.; Yousefi, Y.; Zarrin, A.; Soltani, M.; Masoompour Samakosh, J.; Azizi, G.; Miller, S.T.K. Modeling the exceptional south Foehn event (Garmij) over the Alborz Mountains during the extreme forest fire of December 2005. Nat. Hazards 2015, 75, 2489–2518. [Google Scholar] [CrossRef]
- Zängl, G.; Gohm, A.; Geier, G. South foehn in the Wipp Valley? Innsbruck region: Numerical simulations of the 24 October 1999 case (MAP-IOP 10). Meteorol. Atmos. Phys. 2004, 86, 213–243. [Google Scholar] [CrossRef]
- Jackson, P.L.; Mayr, G.; Vosper, S. Dynamically-Driven Winds. In Mountain Weather Research and Forecasting; Chow, F.K., de Wekker, S.F.J., Snyder, B.J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 121–218. ISBN 978-94-007-4097-6. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Netherlands: Dordrecht, The Netherlands, 1988; ISBN 978-90-277-2769-5. [Google Scholar]
- Bousquet, O.; Smull, B.F. Observations and impacts of upstream blocking during a widespread orographic precipitation event. Q. J. R. Meteorol. Soc. 2003, 129, 391–409. [Google Scholar] [CrossRef]
- Medina, S.; Houze, R.A., Jr. Air motions and precipitation growth in Alpine storms. Q. J. R. Meteorol. Soc. 2003, 129, 345–371. [Google Scholar] [CrossRef] [Green Version]
- Malz, P.; Meier, W.; Casassa, G.; Jaña, R.; Skvarca, P.; Braun, M. Elevation and Mass Changes of the Southern Patagonia Icefield Derived from TanDEM-X and SRTM Data. Remote Sens. 2018, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Hood, E.; Williams, M.; Cline, D. Sublimation from a seasonal snowpack at a continental, mid-latitude alpine site. Hydrol. Process. 1999, 13, 1781–1797. [Google Scholar] [CrossRef]
- Hayashi, M.; Hirota, T.; Iwata, Y.; Takayabu, I. Snowmelt Energy Balance and Its Relation to Foehn Events in Tokachi, Japan. JMSJ 2005, 83, 783–798. [Google Scholar] [CrossRef] [Green Version]
- Marzeion, B.; Hofer, M.; Jarosch, A.H.; Kaser, G.; Mölg, T. A minimal model for reconstructing interannual mass balance variability of glaciers in the European Alps. Cryosphere 2012, 6, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.; Kilian, R.; Glaser, M. Energy balance in the ablation zone during the summer season at the Gran Campo Nevado Ice Cap in the Southern Andes. Glob. Planet. Change 2007, 59, 175–188. [Google Scholar] [CrossRef]
- Kuipers Munneke, P.; Luckman, A.J.; Bevan, S.L.; Smeets, C.J.P.P.; Gilbert, E.; van den Broeke, M.R.; Wang, W.; Zender, C.; Hubbard, B.; Ashmore, D.; et al. Intense Winter Surface Melt on an Antarctic Ice Shelf. Geophys. Res. Lett. 2018, 45, 7615–7623. [Google Scholar] [CrossRef]
- MacDonell, S.; Kinnard, C.; Mölg, T.; Nicholson, L.; Abermann, J. Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile. Cryosphere 2013, 7, 1513–1526. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Morroni, G.; Gironás, J.; Caneo, M.; Delgado, R.; Garreaud, R. Using the Weather Research and Forecasting (WRF) Model for Precipitation Forecasting in an Andean Region with Complex Topography. Atmosphere 2018, 9, 304. [Google Scholar] [CrossRef] [Green Version]
AWS | Altitude | Location | Variables | Available Data Since | Temporal Resolution |
---|---|---|---|---|---|
FA (windward) | 45 m | 50°57′44.7″ S, 73°46′06.2″ W | T, RH, R | 2015 | Daily, hourly |
CE (mountain) | 1100 m | 50°57′54.5″ S, 73°18′54.0″ W | T, RH, G, U, Dir, R | 2017 | Hourly |
NG (lee) | 230 m | 50°58′32.0″ S, 73°13′19.0″ W | T, RH, G, U, Dir, R | 2015 | 10 min |
GT (lee) | 350 m | 51°07′01.6″ S, 73°16′56.7″ W | T, RH, U, Dir, R | 2011 | Daily, hourly |
Variable | Sensor Name | Accuracy |
---|---|---|
Temperature and Humidity | Campbell Scientific CS215 | ±0.4 °C ±4.0% |
Wind | Campbell Scientific Young 05108-45-L | ±0.3 m/s or 1% |
Radiation | Campbell Scientific CS300 | ±5.0% of total daily radiation |
Precipitation | Campbell Scientific Young 52202-L | ±3.0% up to 50 mm/h up to 50.0% local wind undercatch |
Parameter | Selection |
---|---|
Topography resolution | 500 m (SRTM) |
Land use | Land cover classification system (LCCS) |
Horizontal resolution | d01: 20 km, d02: 4 km, d03: 1 km |
Vertical resolution | 50 levels |
Nesting | One-way grid nesting with default coefficients for u, v, θ and q above the planetary boundary layer |
Nudging | 3-hourly on d01 |
Land surface physics | Noah multi-physics land surface model |
Microphysics | Morrison double-moment micro-physic scheme |
Radiation (longwave and shortwave) | Rapid radiative transfer model (RRTMG) scheme |
Surface layer physics | Mellor–Yamada–Nakanishi–Niino (MYNN) surface layer scheme |
Planetary boundary layer | MYNN2 boundary layer scheme |
Convection | Kain–Fritsch convection scheme (d01 and d02) |
AWS | Statistic | Supercritical Case | Transition Case | Subcritical Case | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T | RH | U | T | RH | U | T | RH | U | ||
FA | MMB | 0.55 | −12.66 | - | −0.74 | −6.64 | - | −1.75 | 5.95 | - |
RMSE | 2.32 | 24.11 | - | 1.73 | 19.94 | - | 1.94 | 9.61 | - | |
r | 0.72 | 0.45 | - | 0.88 | 0.55 | - | 0.65 | 0.56 | - | |
CE | MMB | −2.08 | 1.82 | - | −1.88 | −0.13 | - | −1.20 | 12.43 | - |
RMSE | 2.87 | 13.10 | - | 2.64 | 16.14 | - | 1.72 | 16.59 | - | |
r | 0.69 | 0.91 | - | 0.63 | 0.22 | - | 0.66 | 0.60 | - | |
NG | MMB | −1.66 | −1.26 | 0.87 | −1.35 | −1.79 | 0.71 | −3.40 | 12.77 | 3.02 |
RMSE | 3.21 | 12.72 | 2.37 | 3.22 | 16.74 | 2.73 | 3.63 | 15.62 | 4.23 | |
r | 0.78 | 0.59 | 0.68 | 0.50 | 0.56 | 0.47 | 0.13 | 0.51 | −0.02 | |
GT | MMB | −0.41 | −6.12 | 0.59 | −0.55 | −0.85 | 0.16 | −3.10 | 21.43 | 1.69 |
RMSE | 2.20 | 14.16 | 1.90 | 2.64 | 13.55 | 2.36 | 3.28 | 22.93 | 3.70 | |
r | 0.83 | 0.07 | 0.48 | 0.49 | 0.43 | 0.37 | 0.73 | 0.54 | −0.04 |
Variable | Supercritical Case | Transition Case | Subcritical Case | |||
---|---|---|---|---|---|---|
NG | CE | NG | CE | NG | CE | |
SWin (W/m2) | +100.7 | +122.5 | +63.2 | +87.5 | +137.8 | +39.9 |
Hlat (W/m2) | −3.3 | +0.5 | −21.5 | −131.4 | −52.3 | −48.5 |
Hsen (W/m2) | +94.8 | −19.1 | +72.4 | +106.1 | +157.7 | +14.3 |
Fmelt (%) | 46.6 | - | 75.7 | 100 | 39.8 | 47.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temme, F.; Turton, J.V.; Mölg, T.; Sauter, T. Flow Regimes and Föhn Types Characterize the Local Climate of Southern Patagonia. Atmosphere 2020, 11, 899. https://doi.org/10.3390/atmos11090899
Temme F, Turton JV, Mölg T, Sauter T. Flow Regimes and Föhn Types Characterize the Local Climate of Southern Patagonia. Atmosphere. 2020; 11(9):899. https://doi.org/10.3390/atmos11090899
Chicago/Turabian StyleTemme, Franziska, Jenny V. Turton, Thomas Mölg, and Tobias Sauter. 2020. "Flow Regimes and Föhn Types Characterize the Local Climate of Southern Patagonia" Atmosphere 11, no. 9: 899. https://doi.org/10.3390/atmos11090899
APA StyleTemme, F., Turton, J. V., Mölg, T., & Sauter, T. (2020). Flow Regimes and Föhn Types Characterize the Local Climate of Southern Patagonia. Atmosphere, 11(9), 899. https://doi.org/10.3390/atmos11090899