Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Observations
2.3. Climate Reanalysis Downscaling
2.4. WRF Variables
- T = temperature [K]
- p = pressure [Pa]
- q = specific humidity or the mass mixing ratio of water vapor to total air (dimensionless)
- = reference temperature (typically 273.16 K) [K]
2.5. Evaluation
2.6. Selection of the Best Configuration
3. Results
3.1. Configuration Performance
3.2. Spatial Distribution of the Result
3.2.1. Precipitation
3.2.2. Temperature
3.2.3. Relative Humidity and Surface Pressure
3.2.4. Wind Speed
3.3. Multiple Forcing
4. Discussion
4.1. Observation Network Quality
4.2. Model Selection
4.3. Multiple Forcing and General Remarks
Author Contributions
Funding
Conflicts of Interest
Appendix A. Comparison Result for Maximum and Minimum Temperature, and Surface Pressures
Appendix A.1. Maximum and Minimum Temperature Results
Appendix A.2. Surface Pressure Results
References
- Dussaillant, J.A.; Buytaert, W.; Meier, C.; Espinoza, F. Hydrological regime of remote catchments with extreme gradients under accelerated change: The Baker basin in Patagonia. Hydrol. Sci. J. 2012, 57, 1530–1542. [Google Scholar] [CrossRef]
- Fosser, G.; Khodayar, S.; Berg, P. Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim. Dyn. 2014, 44, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Chang, H.I.; Castro, C.L.; Dominguez, F. Credibility of convection-permitting modeling to improve seasonal precipitation forecasting in the southwestern United States. Front. Earth Sci. 2019, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States*. J. Clim. 2002, 15, 3237–3251. [Google Scholar] [CrossRef] [Green Version]
- Mearns, L.; Bukovsky, M.; Pryor, S.; Magana, V. Climate Change in North America; Regional Climate Studies; Springer International Publishing: Cham, Switzerland, 2014; pp. 201–250. ISBN 978-3-319-03768-4. [Google Scholar]
- Schaefer, M.; Machguth, H.; Falvey, M.; Casassa, G. Modeling past and future surface mass balance of the Northern Patagonia Icefield. J. Geophys. Res. Earth Surf. 2013, 118, 571–588. [Google Scholar] [CrossRef] [Green Version]
- Mearns, L.O.; Sain, S.; Leung, L.R.; Bukovsky, M.S.; McGinnis, S.; Biner, S.; Caya, D.; Arritt, R.W.; Gutowski, W.; Takle, E.; et al. Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim. Chang. 2013, 120, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Mearns, L.O.; Gutowski, W.; Jones, R.; Leung, R.; McGinnis, S.; Nunes, A.; Qian, Y. A Regional Climate Change Assessment Program for North America. Eos Trans. Am. Geophys. Union 2009, 90, 311. [Google Scholar] [CrossRef]
- Mearns, L.O.; Gutowski, W.J.; Jones, R.; Leung, L.Y.; McGinnis, S.; Nunes, A.M.B.; Qian, Y. The North American Regional Climate Change Assessment Program Dataset; National Center for Atmospheric Research Earth System Grid Data Portal: Boulder, CO, USA, 2007; Available online: http://www.earthsystemgrid (accessed on 3 May 2016).
- Müller, O.V.; Lovino, M.A.; Berbery, E.H. Evaluation of WRF Model Forecasts and Their Use for Hydroclimate Monitoring over Southern South America. Weather Forecast. 2016, 31, 1001–1017. [Google Scholar] [CrossRef] [Green Version]
- Villarroel, C.; Carrasco, J.F.; Casassa, G.; Falvey, M. Modeling Near-Surface Air Temperature and Precipitation Using WRF with 5-km Resolution in the Northern Patagonia Icefield: A Pilot Simulation. Int. J. Geosci. 2013, 4, 1193–1199. [Google Scholar] [CrossRef] [Green Version]
- Yáñez-Morroni, G.; Gironás, J.; Caneo, M.; Delgado, R.; Garreaud, R. Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography. Atmosphere 2018, 9, 304. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.J.; Saulo, C.; Nogués-Paegle, J. WRF Model Sensitivity to Choice of Parameterization over South America: Validation against Surface Variables. Mon. Weather Rev. 2010, 138, 3342–3355. [Google Scholar] [CrossRef]
- Garreaud, R.; Lopez, P.; Minvielle, M.; Rojas, M. Large-scale control on the Patagonian climate. J. Clim. 2013, 26, 215–230. [Google Scholar] [CrossRef]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Masiokas, M.H.; Rabatel, A.; Rivera, A.; Ruiz, L.; Pitte, P.; Ceballos, J.L.; Barcaza, G.; Soruco, A.; Bown, F.; Berthier, E.; et al. A Review of the Current State and Recent Changes of the Andean Cryosphere. Front. Earth Sci. 2020, 8, 1–27. [Google Scholar] [CrossRef]
- Aravena, J.C.; Luckman, B.H. Spatio-temporal rainfall patterns in Southern South America. Int. J. Climatol. 2009, 29, 2106–2120. [Google Scholar] [CrossRef]
- Bury, J.T.; Mark, B.G.; McKenzie, J.M.; French, A.; Baraer, M.; Huh, K.I.; Zapata Luyo, M.A.; Gómez López, R.J. Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim. Chang. 2010, 105, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Krogh, S.A.; Pomeroy, J.W.; McPhee, J. Physically Based Mountain Hydrological Modeling Using Reanalysis Data in Patagonia. J. Hydrometeorol. 2015, 16, 172–193. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Davies, B. GLIMS Glacier Database; The National Snow and Ice Data Center: Boulder, CO, USA, 2012; Available online: http://www.glims.org/maps/glims (accessed on 21 May 2020). [CrossRef]
- GLIMS and NSIDC. Global Land Ice Measurements from Space Glacier Database; The International GLIMS Community and The National Snow and Ice Data Center: Boulder CO, USA, 2005; updated 2020. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.D.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR; Technical Report; NCAR: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 4 November 2019).
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicola, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. In Meteorology Section of ECMWF Newsletter No. 159; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2019; pp. 17–24. [Google Scholar] [CrossRef]
- NCAR. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2000. [Google Scholar] [CrossRef]
- Ikeda, K.; Rasmussen, R.; Liu, C.; Gochis, D.; Yates, D.; Chen, F.; Tewari, M.; Barlage, M.; Dudhia, J.; Miller, K.; et al. Simulation of seasonal snowfall over Colorado. Atmos. Res. 2010, 97, 462–477. [Google Scholar] [CrossRef]
- Rasmussen, R.; Liu, C.; Ikeda, K.; Gochis, D.; Yates, D.; Chen, F.; Tewari, M.; Barlage, M.; Dudhia, J.; Yu, W.; et al. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Clim. 2011, 24, 3015–3048. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ikeda, K.; Rasmussen, R.; Barlage, M.; Newman, A.J.; Prein, A.F.; Chen, F.; Chen, L.; Clark, M.; Dai, A.; et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 2016, 1–25. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Kiehl, J.T.; Briegleb, B. Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Technical Note, NCAR/TN-464+STR; Technical Report; NCAR: Boulder, CO, USA, 2004. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Galperin, B.; Perov, V. Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice. Bound.-Layer Meteorol. 2005, 117, 231–257. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.L.; Niu, G.Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. 2011, 116, D12110. [Google Scholar] [CrossRef]
- Iribarne, J.V.; Godson, W.L. Atmospheric Thermodynamics. In Geophysics and Astrophysics Monographs, 2nd ed.; McCormac, B.M., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 1981; p. 259. [Google Scholar]
- Pushpalatha, R.; Perrin, C.; Moine, N.L.; Andréassian, V. A review of efficiency criteria suitable for evaluating low-flow simulations. J. Hydrol. 2012, 420–421, 171–182. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Salas-Eljatib, C. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de Roble-Laurel-Lingue. Bosque (Valdivia) 2002, 23. [Google Scholar] [CrossRef]
- WMO. Measurement of surface wind. In Part I. Measurement of Meteorological Variables; Chapter 5; World Meteorological Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Chadee, X.T.; Seegobin, N.R.; Clarke, R.M. Optimizing the weather research and forecasting (WRF) model for mapping the near-surface wind resources over the southernmost caribbean islands of Trinidad and Tobago. Energies 2017, 10, 931. [Google Scholar] [CrossRef] [Green Version]
- Stergiou, I.; Tagaris, E.; Sotiropoulou, R.E.P. Sensitivity Assessment of WRF Parameterizations over Europe. Proceedings 2017, 1, 119. [Google Scholar] [CrossRef] [Green Version]
- Jeworrek, J.; West, G.; Stull, R. Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Weather Forecast. 2019, 34, 1097–1115. [Google Scholar] [CrossRef]
- Boadh, R.; Satyanarayana, A.N.; Rama Krishna, T.V.; Madala, S. Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for their application to air pollution dispersion modeling over a tropical station. Atmosfera 2016, 29, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.E.; Cavallo, S.M.; Coniglio, M.C.; Brooks, H.E. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Weather Forecast. 2015, 30, 591–612. [Google Scholar] [CrossRef]
- Jain, S.; Panda, J.; Rath, S.S.; Devara, P. Evaluating Land Surface Models in WRF Simulations over DMIC Region. Indian J. Sci. Technol. 2017, 10, 1–24. [Google Scholar] [CrossRef]
- Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K. Impacts of land surface model and land use data on WRF model simulations of rainfall and temperature over Lake Tana Basin, Ethiopia. Heliyon 2019, 5, 1–14. [Google Scholar] [CrossRef]
- CHEN, W.D.; CUI, F.; ZHOU, H.; DING, H.; LI, D.X. Impacts of different radiation schemes on the prediction of solar radiation and photovoltaic power. Atmos. Ocean. Sci. Lett. 2017, 10, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Tastula, E.M.; Vihma, T. WRF model experiments on the Antarctic atmosphere in winter. Mon. Weather Rev. 2011, 139, 1279–1291. [Google Scholar] [CrossRef]
- Zempila, M.M.; Giannaros, T.M.; Bais, A.; Melas, D.; Kazantzidis, A. Evaluation of WRF shortwave radiation parameterizations in predicting Global Horizontal Irradiance in Greece. Renew. Energy 2016, 86, 831–840. [Google Scholar] [CrossRef]
Station | Institution | Lat | Lon | PP | RH | SP | T2 | Tmax | Tmin | WS | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Bahia Murta | DGA | −46.46 | −72.67 | Yes | - | - | - | Yes | Yes | − |
2 | Bajada Ibanez | INIA | −46.18 | −72.05 | No | Yes | Yes | No | Yes | Yes | Yes |
3 | Balmaceda Ad | DMC | −45.91 | −71.69 | Yes | - | - | Yes | Yes | Yes | − |
4 | Caleta Tortel | CDOM | −47.80 | −73.54 | - | Yes | Yes | - | - | - | Yes |
5 | Caleta Tortel | DGA | −47.80 | −73.54 | Yes | - | - | Yes | Yes | Yes | − |
6 | Chile Chico | DGA | −46.54 | −71.71 | No | - | - | - | No | No | − |
7 | Chile Chico | INIA | −46.54 | −71.70 | No | Yes | Yes | No | No | No | Yes |
8 | Chile Chico Ad | DMC | −46.58 | −71.69 | Yes | - | - | Yes | Yes | Yes | − |
9 | Cochrane | DGA | −47.24 | −72.58 | No | - | - | - | No | No | − |
10 | Cochrane | INIA | −47.24 | −72.58 | Yes | Yes | Yes | Yes | Yes | No | Yes |
11 | El Claro | INIA | −45.58 | −72.09 | Yes | - | - | - | - | - | − |
12 | Estancia Valle Chacabuco | DGA | −47.12 | −72.48 | No | - | - | - | - | - | − |
13 | Glaciar San Rafael | DGA | −46.64 | −73.86 | No | - | - | - | Yes | Yes | − |
14 | HNG San Rafael | DGA | −46.79 | −73.58 | - | - | - | Yes | - | - | Yes |
15 | Lago Cachet 2 En Glaciar Colonia | DGA | −47.20 | −73.25 | No | - | - | Yes | Yes | Yes | − |
16 | Lago General Carrera en Desague | DGA | −46.85 | −72.80 | No | - | - | - | - | - | − |
17 | Lago General Carrera En Puerto Guadal | DGA | −46.84 | −72.70 | No | - | - | - | - | - | − |
18 | Lago General Carrera Fachinal | DGA | −46.54 | −72.23 | No | - | - | Yes | No | Yes | − |
19 | Laguna San Rafael | DGA | −46.64 | −73.90 | - | Yes | - | - | - | - | − |
20 | Laguna San Rafael | GDGA | −46.64 | −73.90 | - | - | - | Yes | - | - | Yes |
21 | Lord Cochrane Ad | DMC | −47.24 | −72.59 | No | - | - | Yes | Yes | Yes | − |
22 | Perito Moreno | GHCN | −46.52 | −71.02 | - | - | - | Yes | - | Yes | − |
23 | Puerto Guadal | DGA | −46.84 | −72.70 | No | - | - | - | Yes | Yes | − |
24 | Puerto Ibanez | DGA | −46.29 | −71.93 | No | - | - | - | No | No | − |
25 | Rio Baker en Angostura Chacabuco | DGA | −47.14 | −72.73 | Yes | - | - | Yes | Yes | - | − |
26 | Rio Cochrane en Cochrane | DGA | −47.25 | −72.56 | Yes | - | - | No | No | No | − |
27 | Rio Colonia en Nacimiento | DGA | −47.34 | −73.11 | Yes | Yes | - | Yes | Yes | Yes | − |
28 | Rio Colonia en Nacimiento | GDGA | −47.35 | −73.16 | - | - | - | Yes | - | - | Yes |
29 | Rio Ibanez en Desembocadura | DGA | −46.27 | −71.99 | Yes | - | - | Yes | Yes | Yes | − |
30 | Rio Nef Antes Junta Estero El Revalse | DGA | −47.14 | −73.09 | Yes | No | - | Yes | Yes | Yes | − |
31 | Rio Nef Antes Junta Estero El Revalse | GDGA | −47.14 | −73.08 | - | - | - | Yes | - | - | Yes |
32 | Rio Pascua Antes Junta Rio Quetru | DGA | −48.16 | −73.09 | Yes | - | - | Yes | Yes | Yes | − |
33 | Tamelaike | INIA | −45.76 | −72.06 | - | Yes | Yes | Yes | Yes | Yes | Yes |
34 | Teniente Vidal Coyhaique Ad | DMC | −45.59 | −72.11 | Yes | - | - | - | - | - | − |
35 | Villa Cerro Castillo | DGA | −46.12 | −72.15 | Yes | - | - | - | - | - | − |
36 | Vista Hermosa | INIA | −45.94 | −71.84 | - | Yes | Yes | Yes | Yes | Yes | Yes |
N | Microphysics | Long Wave | Shortwave | PBL | Soil Model |
---|---|---|---|---|---|
Mp Physics | ra lw Physics | ra sw Physics | bl pbl Physics | sf Surface Physics | |
1 | 3 = WSM3 | 1 = RRTM | 1 = Dudhia | 1 = YSU | 1 = 5 layer thermal |
2 | 8 = Thompson | 3 = CAM | 3 = CAM | 2 = MYJ | 4 = NoahMP |
3 | 4 = QNSE |
Configuration | Microphysics | Long Wave | Short Wave | PBL | LSM |
---|---|---|---|---|---|
1 | WSM3 | RRTM | Dudhia | YSU | NoahMP |
2 | WSM3 | RRTM | Dudhia | YSU | 5 layer thermal |
3 | WSM3 | RRTM | Dudhia | MYJ | 5 layer thermal |
4 | WSM3 | RRTM | Dudhia | MYJ | NoahMP |
5 | Thompson | RRTM | Dudhia | QNSE | 5 layer thermal |
6 | Thompson | RRTM | Dudhia | QNSE | NoahMP |
7 | WSM3 | RRTM | Dudhia | QNSE | 5 layer thermal |
8 | WSM3 | RRTM | Dudhia | QNSE | NoahMP |
9 | Thompson | RRTM | Dudhia | YSU | NoahMP |
10 | Thompson | RRTM | Dudhia | YSU | 5 layer thermal |
11 | Thompson | RRTM | Dudhia | MYJ | NoahMP |
12 | Thompson | RRTM | Dudhia | MYJ | 5 layer thermal |
13 | WSM3 | CAM | CAM | YSU | NoahMP |
14 | WSM3 | CAM | CAM | YSU | 5 layer thermal |
15 | WSM3 | CAM | CAM | MYJ | NoahMP |
16 | WSM3 | CAM | CAM | MYJ | 5 layer thermal |
17 | Thompson | CAM | CAM | QNSE | 5 layer thermal |
18 | Thompson | CAM | CAM | QNSE | NoahMP |
19 | WSM3 | CAM | CAM | QNSE | 5 layer thermal |
20 | WSM3 | CAM | CAM | QNSE | NoahMP |
21 | Thompson | CAM | CAM | YSU | NoahMP |
22 | Thompson | CAM | CAM | YSU | 5 layer thermal |
23 | Thompson | CAM | CAM | MYJ | NoahMP |
24 | Thompson | CAM | CAM | MYJ | 5 layer thermal |
Configuration | PP | RH | T2 | Tmax | Tmin | Combined Score | |
---|---|---|---|---|---|---|---|
1 | Conf-10 | 0.12 | 0.28 | 0.11 | 0.13 | 0.07 | 0.17 |
2 | Conf-14 | 0.36 | 0.07 | 0.00 | 0.00 | 0.23 | 0.17 |
3 | Conf-2 | 0.64 | 0.00 | 0.01 | 0.09 | 0.00 | 0.22 |
4 | Conf-9 | 0.00 | 0.23 | 0.42 | 0.57 | 0.55 | 0.25 |
5 | Conf-22 | 0.44 | 0.24 | 0.07 | 0.07 | 0.16 | 0.26 |
6 | Conf-13 | 0.23 | 0.04 | 0.36 | 0.34 | 0.94 | 0.27 |
7 | Conf-18 | 0.41 | 0.50 | 0.34 | 0.43 | 0.20 | 0.41 |
8 | Conf-1 | 0.30 | 0.24 | 0.66 | 0.63 | 0.96 | 0.43 |
9 | Conf-6 | 0.42 | 0.54 | 0.39 | 0.59 | 0.10 | 0.44 |
10 | Conf-21 | 0.66 | 0.26 | 0.43 | 0.44 | 0.79 | 0.49 |
11 | Conf-16 | 0.64 | 0.60 | 0.26 | 0.25 | 0.56 | 0.53 |
12 | Conf-12 | 0.39 | 0.76 | 0.35 | 0.44 | 0.57 | 0.53 |
13 | Conf-11 | 0.23 | 0.73 | 0.76 | 0.97 | 0.45 | 0.56 |
14 | Conf-8 | 0.92 | 0.45 | 0.48 | 0.56 | 0.28 | 0.60 |
15 | Conf-20 | 1.00 | 0.40 | 0.32 | 0.06 | 0.86 | 0.60 |
16 | Conf-24 | 0.64 | 0.76 | 0.41 | 0.41 | 0.57 | 0.62 |
17 | Conf-3 | 0.67 | 0.82 | 0.33 | 0.51 | 0.31 | 0.62 |
18 | Conf-19 | 1.00 | 0.77 | 0.17 | 0.19 | 0.16 | 0.65 |
19 | Conf-23 | 0.33 | 0.64 | 1.00 | 0.95 | 0.97 | 0.65 |
20 | Conf-5 | 0.70 | 0.82 | 0.39 | 0.61 | 0.42 | 0.66 |
21 | Conf-17 | 0.66 | 1.00 | 0.47 | 0.68 | 0.17 | 0.70 |
22 | Conf-15 | 0.69 | 0.60 | 0.80 | 0.88 | 1.00 | 0.73 |
23 | Conf-7 | 0.89 | 0.95 | 0.40 | 0.70 | 0.10 | 0.75 |
24 | Conf-4 | 0.81 | 0.68 | 0.88 | 1.00 | 0.88 | 0.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somos-Valenzuela, M.; Manquehual-Cheuque, F. Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin. Atmosphere 2020, 11, 815. https://doi.org/10.3390/atmos11080815
Somos-Valenzuela M, Manquehual-Cheuque F. Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin. Atmosphere. 2020; 11(8):815. https://doi.org/10.3390/atmos11080815
Chicago/Turabian StyleSomos-Valenzuela, Marcelo, and Francisco Manquehual-Cheuque. 2020. "Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin" Atmosphere 11, no. 8: 815. https://doi.org/10.3390/atmos11080815
APA StyleSomos-Valenzuela, M., & Manquehual-Cheuque, F. (2020). Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin. Atmosphere, 11(8), 815. https://doi.org/10.3390/atmos11080815