Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades
Abstract
1. Introduction
2. Experiments
3. Results
4. Discussion
4.1. Contribution of the Different Anthropogenic Sources
4.2. Chemometric Approach
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oberdörster, G.; Utell, M.J. Ultrafine particles in the urban air: To the respiratory tract-Ang beyond? Environ. Health Persp. 2002, 110, A440–A441. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Nway, N.C.; Fujitani, Y.; Hirano, S.; Mar, O.; Win-Shwe, T.T. Role of TLR4 in olfactory-based spatial learning activity of neonatal mice after developmental exposure to diesel exhaust origin secondary organic aerosol. Neurotoxicology 2017, 63, 155–165. [Google Scholar] [CrossRef]
- Tobías, A.; Rivas, I.; Reche, C.; Alastuey, A.; Rodríguez, S.; Fernández-Camacho, R.; Sánchez de la Campa, A.M.; de la Rosa, J.; Sunyer, J.; Querol, X. Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environ. Int. 2018, 111, 144–151. [Google Scholar] [CrossRef]
- Manigrasso, M.; Costabile, F.; Liberto, L.D.; Gobbi, G.P.; Gualtieri, M.; Zanini, G.; Avino, P. Size resolved aerosol respiratory doses in a Mediterranean urban area: From PM10 to ultrafine particles. Environ. Int. 2020, 141, 105714. [Google Scholar] [CrossRef]
- Gualtieri, M.; Grollino, M.G.; Consales, C.; Costabile, F.; Manigrasso, M.; Avino, P.; Aufderheide, M.; Cordelli, E.; Di Liberto, L.; Petralia, E.; et al. Is it the time to study air pollution effects under environmental conditions? A case study to support the shift of in vitro toxicology from the bench to the field. Chemosphere 2018, 207, 552–564. [Google Scholar] [CrossRef]
- Longhin, E.M.; Mantecca, P.; Gualtieri, M. Fifteen years of airborne particulates in vitro toxicology in milano: Lessons and perspectives learned. Int. J. Mol. Sci. 2020, 21, 2489. [Google Scholar] [CrossRef]
- IARC. Diesel and Gasoline Engine Exhausts and Some Nitroarenes; International Agency for Research on Cancer: Lyon, France, 2014; Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 105. [Google Scholar]
- IARC. Welding, Molybdenum Trioxide, and Indium Tin Oxide; International Agency for Research on Cancer: Lyon, France, 2018; Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 118. [Google Scholar]
- IARC. Outdoor Air Pollution; International Agency for Research on Cancer: Lyon, France, 2015; Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 109. [Google Scholar]
- Manigrasso, M.; Natale, C.; Vitali, M.; Protano, C.; Avino, P. Pedestrians in traffic environments: Ultrafine particle respiratory doses. Int. J. Environ. Res. Public Health 2017, 14, 288. [Google Scholar] [CrossRef]
- Manigrasso, M.; Protano, C.; Martellucci, S.; Mattei, V.; Vitali, M.; Avino, P. Evaluation of the submicron particles distribution between mountain and urban site: Contribution of the transportation for defining environmental and human health issues. Int. J. Environ. Res. Public Health 2019, 16, 1339. [Google Scholar] [CrossRef]
- Febo, A.; Guglielmi, F.; Manigrasso, M.; Ciambottini, V.; Avino, P. Local air pollution and long–range mass transport of atmospheric particulate matter: A comparative study of the temporal evolution of the aerosol size fractions. Atmos. Pollut. Res. 2010, 1, 141–146. [Google Scholar] [CrossRef]
- Manigrasso, M.; Febo, A.; Guglielmi, F.; Ciambottini, V.; Avino, P. Relevance of aerosol size spectrum analysis as support to qualitative source apportionment studies. Environ. Pollut. 2012, 170, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, Y.; Huang, Y.; Lin, C.; Li, Z.; Fung, J.C.H.; Lau, A.K.H. Differences in concentration and source apportionment of PM 2.5 between 2006 and 2015 over the PRD region in southern China. Sci. Total Environ. 2019, 673, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, X.; Jin, M.; Zhang, X.; Wang, S. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure from 1998 to 2016. Environ. Int. 2019, 128, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Ďurčanská, D.; Jandačka, D. Chemical composition of PM10, PM2.5, PM1 and influence of meteorological conditions on them in Zilina selfgoverning region, Slovakia. Solid State Phenom. 2016, 244, 171–181. [Google Scholar]
- Avino, P.; Brocco, D.; Lepore, L.; Pareti, S. Interpretation of atmospheric pollution phenomena in relationship with the vertical atmospheric remixing by means of natural radioactivity measurements (radon) of particulate matter. Ann. Chim. Rome 2003, 93, 589–594. [Google Scholar]
- European Union. Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 Relating to Measures to be Taken against Air Pollution by Emissions from Motor Vehicles and Amending Council Directive 70/220/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31998L0069 (accessed on 16 April 2020).
- European Union. Directive 2002/51/EC of the European Parliament and of the Council of 19 July 2002 on the Reduction of the Level of Pollutant Emissions from Two- and Three-Wheel Motor Vehicles and Amending Directive 97/24/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002L0051 (accessed on 16 April 2020).
- European Union. Directive 2002/80/EC of 3 October 2002 Adapting to Technical Progress Council Directive 70/220/EEC Relating to Measures to Be Taken against Air Pollution by Emissions from Motor Vehicles. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0080 (accessed on 16 April 2020).
- European Union. Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007R0715 (accessed on 16 April 2020).
- Marconi, A.; Cattani, G.; Cusano, M.; Ferdinandi, M.; Inglessis, M.; Viviano, G.; Settimo, G.; Forastiere, F. Two-years of fine and ultrafine particles measurements in Rome, Italy. J. Toxicol. Env. Health A 2007, 70, 213–221. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Morawska, L. Differentiating between particle formation and growth events in an urban environment. Atmos. Chem. Phys. 2018, 18, 11171–11183. [Google Scholar] [CrossRef]
- Perrino, C.; Catrambone, M.; Pietrodangelo, A. Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: A case study in Rome, Italy. Environ. Int. 2008, 34, 621–628. [Google Scholar] [CrossRef]
- Avino, P.; Manigrasso, M.; Cuomo, F. Natural radioactivity as an easy and quick parameter for describing the dynamic of the Planetary Boundary Layer. RSC Adv. 2015, 5, 57538–57549. [Google Scholar] [CrossRef]
- Charron, A.; Birmili, W.; Harrison, R.M. Fingerprinting particle origins according to their size distribution at a UK rural site. J. Geophys. Res. Atmos. 2008, 113, D07202. [Google Scholar] [CrossRef]
- Agus, E.L.; Young, D.T.; Lingard, J.J.N.; Smalley, R.J.; Tate, J.E.; Goodman, P.S.; Tomlin, A.S. Factors influencing particle number concentrations, size distributions and modal parameters at a roof-level and roadside site in Leicester, UK. Sci. Total Environ. 2007, 386, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Fennell, P.; Symonds, J.; Britter, R. Treatment of losses of ultrafine aerosol particles in long sampling tubes during ambient measurements. Atmos. Environ. 2008, 42, 8819–8826. [Google Scholar] [CrossRef]
- Automobile Club d’Italia. Consistency of the Italian Vehicle Fleet at 31/12/2002. Available online: http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/autoritratto/autoritratto-2002.html (accessed on 16 April 2020).
- 32 Kittelson, D.B. Engines and nanoparticles: A review. J. Aerosol Sci. 1998, 29, 575–588. [Google Scholar] [CrossRef]
- Avino, P.; Casciardi, S.; Fanizza, C.; Manigrasso, M. Deep investigation of ultrafine particles in urban air. Aerosol Air Qual. Res. 2011, 11, 654–663. [Google Scholar] [CrossRef]
- Woo, K.; Chen, S.D.R.; Pui, D.Y.H.; Mcmurry, P.H. Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events. Aerosol Sci. Technol. 2001, 34, 75–87. [Google Scholar] [CrossRef]
- Shi, J.P.; Evans, D.E.; Khan, A.A.; Harrison, R.M. Sources and concentration of nanoparticles (<10 nm diameter) in the urban atmosphere. Atmos. Environ. 2001, 25, 1193–1202. [Google Scholar] [CrossRef]
- Hamed, A.; Joutsensaari, J.; Mikkonen, S.; Sogacheva, L.; Dal Maso, M.; Kulmala, M.; Cavalli, F.; Fuzzi, S.; Facchini, M.C.; Decesari, S.; et al. Nucleation and growth of new particles in Po Valley, Italy. Atmos. Chem. Phys. 2007, 7, 355–376. [Google Scholar] [CrossRef]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef]
- Vecchi, R.; Piziali, F.A.; Valli, G.; Favaron, M.; Bernardoni, V. Radon-based estimates of equivalent mixing layer heights: A long-term assessment. Atmos. Environ. 2019, 197, 150–158. [Google Scholar] [CrossRef]
- Salzano, R.; Pasini, A.; Casasanta, G.; Cacciani, M.; Perrino, C. Quantitative interpretation of air radon progeny fluctuations in terms of stability conditions in the atmospheric boundary layer. Bound. Layer Meteorol. 2016, 160, 529–550. [Google Scholar] [CrossRef]
- Salzano, R.; Pasini, A.; Ianniello, A.; Mazzola, M.; Traversi, R.; Udisti, R. High time-resolved radon progeny measurements in the Arctic region (Svalbard islands, Norway): Results and potentialities. Atmos. Chem. Phys. 2018, 18, 6959–6969. [Google Scholar] [CrossRef]
- Acker, K.; Febo, A.; Trick, S.; Perrino, C.; Bruno, P.; Wiesen, P.; Möller, D.; Wieprecht, W.; Auel, R.; Giusto, M.; et al. Nitrous acid in the urban area of Rome. Atmos. Environ. 2006, 40, 3123–3133. [Google Scholar] [CrossRef]
- Avino, P.; Manigrasso, M. Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos. Environ. 2008, 42, 4138–4148. [Google Scholar] [CrossRef]
- Costabile, F.; Alas, H.; Aufderheide, M.; Avino, P.; Amato, F.; Argentini, S.; Barnaba, F.; Berico, M.; Bernardoni, V.; Biondi, R.; et al. First results of the “Carbonaceous Aerosol in Rome and Environs (CARE)” experiment: Beyond current standards for PM10. Atmosphere 2017, 8, 249. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.M.; Petäjä, T.; Ding, A.J.; Wang, L. Atmospheric gas-to-particle conversion: Why NPF events are observed in megacities? Faraday Discuss. 2017, 200, 271–288. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, R.F. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef]
- Koppmann, R.; von Czapiewski, K.; Reid, J.S. A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos. Chem. Phys. Discuss. 2005, 5, 10455–10516. [Google Scholar] [CrossRef]
- Manigrasso, M.; Avino, P. Fast evolution of urban ultrafine particles: Implications for deposition doses in the human respiratory system. Atmos. Environ. 2012, 51, 116–123. [Google Scholar] [CrossRef]
- Fanizza, C.; De Berardis, B.; Ietto, F.; Soggiu, M.E.; Schirò, R.; Inglessis, M.; Ferdinandi, M.; Incoronato, F. Analysis of major pollutants and physico-chemical characteristics of PM2.5 at an urban site in Rome. Sci. Total Environ. 2018, 616–617, 1457–1468. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Avino, P.; Frattolillo, A.; Guerriero, E. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. Environ. Pollut. 2018, 235, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Soggiu, M.E.; Inglessis, M.; Gagliardi, R.V.; Settimo, G.; Marsili, G.; Notardonato, I.; Avino, P. PM10 and PM2.5 qualitative source apportionment using selective wind direction sampling in a port-industrial area in Civitavecchia, Italy. Atmosphere 2020, 11, 94. [Google Scholar] [CrossRef]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total Environ. 2017, 598, 1015–1026. [Google Scholar] [CrossRef] [PubMed]







| Size | s.d. 1 | Min–Max | cv% 2 | 75th perc. 3 | 90th perc. 3 | 95th perc. 3 |
|---|---|---|---|---|---|---|
| Hourly | 73,761 ± 54,924 | 3752–279,466 | 74.6 | 100,066 | 150,699 | 194,283 |
| single channel (nm) during the whole period | ||||||
| 17.8 | 3667 ± 2671 | 217–23,303 | 72.9 | 4876 | 7341 | 8714 |
| 23.7 | 6833 ± 5186 | 418–30,845 | 75.9 | 9135 | 13,660 | 16,993 |
| 31.6 | 8186 ± 6162 | 596–38,708 | 75.3 | 10,532 | 16,468 | 20,836 |
| 42.2 | 9007 ± 6534 | 398–40,048 | 72.5 | 11,700 | 18,468 | 22,586 |
| 56.2 | 10,331 ± 8023 | 277–56,954 | 77.7 | 13,480 | 21,355 | 27,886 |
| 75.0 | 11,026 ± 9608 | 248–56,954 | 87.1 | 14,409 | 23,808 | 31,536 |
| 100.0 | 10,294 ± 9847 | 276–56,558 | 95.7 | 13,227 | 24,376 | 31,581 |
| 133.4 | 7499 ± 7402 | 205–41,762 | 98.7 | 9503 | 18,807 | 23,240 |
| 177.8 | 4224 ± 4095 | 97–26,559 | 96.9 | 5382 | 10,500 | 13,393 |
| 237.1 | 1821 ± 1713 | 41–13,802 | 94.1 | 2359 | 4215 | 5625 |
| 316.2 | 589 ± 549 | 11–5060 | 93.2 | 792 | 1331 | 1757 |
| 421.7 | 158 ± 145 | 13–1328 | 91.9 | 212 | 342 | 445 |
| 562.3 | 41 ± 34 | 11–297 | 91.3 | 52 | 82 | 107 |
| 17.8 | 23.7 | 31.6 | 42.2 | 56.2 | 75.0 | 100.0 | 133.4 | 177.8 | 237.1 | 316.2 | 422.7 | 562.2 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.924 | 0.859 | 0.778 | 0.654 | 0.547 | 0.478 | 0.452 | 0.458 | 0.473 | 0.488 | 0.557 | 0.581 | 17.8 |
| 1 | 0.953 | 0.834 | 0.652 | 0.499 | 0.407 | 0.371 | 0.374 | 0.396 | 0.426 | 0.514 | 0.563 | 23.7 | |
| 1 | 0.935 | 0.767 | 0.608 | 0.509 | 0.465 | 0.462 | 0.482 | 0.513 | 0.601 | 0.647 | 31.6 | ||
| 1 | 0.909 | 0.792 | 0.700 | 0.648 | 0.634 | 0.646 | 0.670 | 0.744 | 0.767 | 42.2 | |||
| 1 | 0.947 | 0.886 | 0.839 | 0.815 | 0.808 | 0.810 | 0.845 | 0.808 | 56.2 | ||||
| 1 | 0.982 | 0.951 | 0.925 | 0.906 | 0.887 | 0.882 | 0.796 | 75.0 | |||||
| 1 | 0.990 | 0.971 | 0.945 | 0.911 | 0.876 | 0.756 | 100.0 | ||||||
| 1 | 0.992 | 0.968 | 0.926 | 0.874 | 0.737 | 133.4 | |||||||
| 1 | 0.988 | 0.950 | 0.893 | 0.753 | 177.8 | ||||||||
| 1 | 0.983 | 0.932 | 0.812 | 237.1 | |||||||||
| 1 | 0.972 | 0.854 | 316.2 | ||||||||||
| 1 | 0.928 | 422.7 | |||||||||||
| 1 | 562.2 |
| y-Axis (nm) | Daily | Weekly | ||||||
|---|---|---|---|---|---|---|---|---|
| Slope (m) | Intercept (q) | r | p | Slope (m) | Intercept (q) | r | p | |
| 23.7 | 2.070 | −753.44 | 0.9868 | 6.75 × 10−19 | 20.073 | −524.61 | 0.9614 | 5.98 × 10−91 |
| 31.6 | 2.401 | −612.94 | 0.9577 | 2.21 × 10−13 | 23.628 | −458.99 | 0.9237 | 4.44 × 10−67 |
| 42.2 | 2.434 | 89.18 | 0.8777 | 1.78 × 10−8 | 23.569 | 404.29 | 0.8512 | 2.44 × 10−44 |
| 56.2 | 2.408 | 1513.60 | 0.7196 | 7.38 × 10−5 | 22.988 | 1969.40 | 0.7065 | 1.03 × 10−23 |
| 75.0 | 2.158 | 3116.52 | 0.6691 | 3.70 × 10−3 | 21.121 | 3356.92 | 0.6681 | 9.66 × 10−12 |
| 100.0 | 1.616 | 4363.64 | 0.4635 | 2.25 × 10−2 | 16.824 | 4184.43 | 0.4703 | 1.26 × 10−6 |
| 133.4 | 0.987 | 3871.82 | 0.4132 | 4.47 × 10−2 | 10.869 | 3540.81 | 0.4271 | 7.76 × 10−5 |
| 177.8 | 0.530 | 2274.80 | 0.4242 | 3.88 × 10−2 | 0.585 | 2087.40 | 0.4352 | 3.73 × 10−5 |
| 237.1 | 0.244 | 920.93 | 0.4680 | 2.11 × 10−2 | 0.265 | 853.22 | 0.4769 | 6.33 × 10−7 |
| 316.2 | 0.092 | 249.60 | 0.4311 | 7.57 × 10−3 | 0.097 | 236.19 | 0.4350 | 7.99 × 10−10 |
| 422.7 | 0.033 | 35.86 | 0.3582 | 4.71 × 10−4 | 0.032 | 40.62 | 0.4411 | 7.97 × 10−17 |
| 562.2 | 0.009 | 3.61 | 0.4348 | 4.33 × 10−5 | 0.009 | 54.59 | 0.4127 | 2.37 × 10−23 |
| UFPs | s.d. 1 | Min–Max | cv% | 75th perc. 2 | 95th perc. 2 |
|---|---|---|---|---|---|
| UFPs (IIH 3) | 36,395 ± 21,495 | 3295–147,777 | 59.1 | 47,253 | 78,003 |
| UFPs (park 4) | 24,600 ± 11,100 | 1730–48,300 | 45.1 | 33,900 |
| Week | ||||||
|---|---|---|---|---|---|---|
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
| sun-00 | mon-00 | tues-00 | wed-00 | thurs-00 | fri-00 | sat-00 |
| sun-01 | mon-01 | tues-01 | wed-01 | thurs-01 | fri-01 | sat-01 |
| sun-02 | mon-02 | tues-02 | wed-02 | thurs-02 | fri-02 | sat-02 |
| sun-03 | mon-03 | tues-03 | wed-03 | thurs-03 | fri-03 | sat-03 |
| sun-04 | mon-04 | tues-04 | wed-04 | thurs-04 | fri-04 | sat-04 |
| sun-05 | mon-05 | tues-05 | wed-05 | thurs-05 | fri-05 | sat-05 |
| sun-06 | mon-06 | tues-06 | wed-06 | thurs-06 | fri-06 | sat-06 |
| sun-07 | mon-07 | tues-07 | wed-07 | thurs-07 | fri-07 | sat-07 |
| sun-08 | mon-08 | tues-08 | wed-08 | thurs-08 | fri-08 | sat-08 |
| sun-09 | mon-09 | tues-09 | wed-09 | thurs-09 | fri-09 | sat-09 |
| sun-10 | mon-10 | tues-10 | wed-10 | thurs-10 | fri-10 | sat-10 |
| sun-11 | mon-11 | tues-11 | wed-11 | thurs-11 | fri-11 | sat-11 |
| sun-12 | mon-12 | tues-12 | wed-12 | thurs-12 | fri-12 | sat-12 |
| sun-13 | mon-13 | tues-13 | wed-13 | thurs-13 | fri-13 | sat-13 |
| sun-14 | mon-14 | tues-14 | wed-14 | thurs-14 | fri-14 | sat-14 |
| sun-15 | mon-15 | tues-15 | wed-15 | thurs-15 | fri-15 | sat-15 |
| sun-16 | mon-16 | tues-16 | wed-16 | thurs-16 | fri-16 | sat-16 |
| sun-17 | mon-17 | tues-17 | wed-17 | thurs-17 | fri-17 | sat-17 |
| sun-18 | mon-18 | tues-18 | wed-18 | thurs-18 | fri-18 | sat-18 |
| sun-19 | mon-19 | tues-19 | wed-19 | thurs-19 | fri-19 | sat-19 |
| sun-20 | mon-20 | tues-20 | wed-20 | thurs-20 | fri-20 | sat-20 |
| sun-21 | mon-21 | tues-21 | wed-21 | thurs-21 | fri-21 | sat-21 |
| sun-22 | mon-22 | tues-22 | wed-22 | thurs-22 | fri-22 | sat-22 |
| sun-23 | mon-23 | tues-23 | wed-23 | thurs-23 | fri-23 | sat-23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Settimo, G.; Soggiu, M.E.; Inglessis, M.; Manigrasso, M.; Avino, P. Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades. Atmosphere 2020, 11, 894. https://doi.org/10.3390/atmos11090894
Settimo G, Soggiu ME, Inglessis M, Manigrasso M, Avino P. Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades. Atmosphere. 2020; 11(9):894. https://doi.org/10.3390/atmos11090894
Chicago/Turabian StyleSettimo, Gaetano, Maria Eleonora Soggiu, Marco Inglessis, Maurizio Manigrasso, and Pasquale Avino. 2020. "Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades" Atmosphere 11, no. 9: 894. https://doi.org/10.3390/atmos11090894
APA StyleSettimo, G., Soggiu, M. E., Inglessis, M., Manigrasso, M., & Avino, P. (2020). Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades. Atmosphere, 11(9), 894. https://doi.org/10.3390/atmos11090894

