Rainfall Symmetry Related to Moisture, Storm Intensity, and Vertical Wind Shear for Tropical Cyclones Landfalling over the U.S. Gulf Coastline
Abstract
:1. Introduction
2. Data
3. Methods
4. Results
4.1. Rainfall Patterns
4.2. TPW Conditions
4.3. Vertical Wind Shear and Storm Motion
4.4. Rainfall Patterns by TPW, Vertical Wind Shear, and Storm Motion
5. Conclusions, Limitations, and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rappaport, E.N. Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Chang. 2012, 2, 205–209. [Google Scholar] [CrossRef]
- Benfield, A. Weather, Climate and Catastrophe Insight: 2017 Annual Report; Aon: Sydney, Australia, 2018; p. 56. [Google Scholar]
- McAdie, C.J.; Lawrence, M.B. Improvements in Tropical Cyclone Track Forecasting in the Atlantic Basin, 1970–1998. Bull. Am. Meteorol. Soc. 2000, 81, 989–997. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Halverson, J.B.; Zipser, E.J. Influence of environmental moisture on TRMM-derived tropical cyclone precipitation over land and ocean. Geophys. Res. Lett. 2008, 35, 35. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Smith, J.A.; Baeck, M.L.; Marchok, T.; Vecchi, G.A. Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res. Atmos. 2011, 116, D23. [Google Scholar] [CrossRef]
- Corbosiero, K.L.; Molinari, J. The Relationship between Storm Motion, Vertical Wind Shear, and Convective Asymmetries in Tropical Cyclones. J. Atmos. Sci. 2003, 60, 366–376. [Google Scholar] [CrossRef]
- Chen, S.S.; Knaff, J.A.; Marks, F.D., Jr. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Mon. Weather Rev. 2006, 134, 3190–3208. [Google Scholar] [CrossRef]
- Rogers, R.F.; Chen, S.S.; Tenerelli, J.; Willoughby, H. A Numerical Study of the Impact of Vertical Shear on the Distribution of Rainfall in Hurricane Bonnie (1998). Mon. Weather Rev. 2003, 131, 1577–1599. [Google Scholar] [CrossRef]
- Kim, D.; Ho, C.-H.; Park, D.R.; Chan, J.C.; Jung, Y.; Dasol, K. The Relationship between Tropical Cyclone Rainfall Area and Environmental Conditions over the Subtropical Oceans. J. Clim. 2018, 31, 4605–4616. [Google Scholar] [CrossRef]
- Corbosiero, K.L.; Molinari, J. The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones. Mon. Weather Rev. 2002, 130, 2110–2123. [Google Scholar] [CrossRef] [Green Version]
- DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 1996, 53, 2076–2087. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.C. The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. R. Meteor. Soc. 1995, 121, 821–851. [Google Scholar] [CrossRef]
- Hence, D.A.; Houze, R.A. Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar. J. Atmos. Sci. 2012, 69, 2644–2661. [Google Scholar] [CrossRef] [Green Version]
- Lonfat, M.; Marks, F.D., Jr.; Chen, S.S. Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective. Mon. Weather Rev. 2004, 132, 1645–1660. [Google Scholar] [CrossRef]
- DiMego, G.J.; Bosart, L.F. The Transformation of Tropical Storm Agnes into an Extratropical Cyclone. Part I: The Observed Fields and Vertical Motion Computations. Mon. Weather Rev. 1982, 110, 385–411. [Google Scholar] [CrossRef]
- Foley, G.R.; Hanstrum, B.N. The Capture of Tropical Cyclones by Cold Fronts off the West Coast of Australia. Weather Forecast. 1994, 9, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Klein, P.M.; Harr, P.A.; Elsberry, R.L. Extratropical Transition of Western North Pacific Tropical Cyclones: An Overview and Conceptual Model of the Transformation Stage. Weather Forecast. 2000, 15, 373–395. [Google Scholar] [CrossRef]
- Matano, H.; Sekioka, M. Some Aspects of Extratropical Transformation of A Tropical Cyclone. J. Meteorol. Soc. Jpn. 1971, 49, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Palmén, E. Vertical Circulation and Release of Kinetic Energy during the Development of Hurricane Hazel into an Extratropical Storm. Tellus 1958, 10, 1–13. [Google Scholar] [CrossRef]
- Atallah, E.H.; Bosart, L.R. The Extratropical Transition and Precipitation Distribution of Hurricane Floyd (1999). Mon. Weather Rev. 2003, 131, 1063–1081. [Google Scholar] [CrossRef]
- Zick, S.E.; Matyas, C.J. A Shape Metric Methodology for Studying the Evolving Geometries of Synoptic-Scale Precipitation Patterns in Tropical Cyclones. Ann. Am. Assoc. Geogr. 2016, 106, 1217–1235. [Google Scholar] [CrossRef]
- Frank, W.M. The structure and energetics of the tropical cyclone I. Storm structure. Mon. Weather Rev. 1977, 105, 1119–1135. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Liu, K.S.; Ching, S.E.; Lai, E.S.T. Asymmetric Distribution of Convection Associated with Tropical Cyclones Making Landfall along the South China Coast. Mon. Weather Rev. 2004, 132, 2410–2420. [Google Scholar] [CrossRef]
- Kimball, S.K. Structure and Evolution of Rainfall in Numerically Simulated Landfalling Hurricanes. Mon. Weather Rev. 2008, 136, 3822–3847. [Google Scholar] [CrossRef]
- Rodgers, E.B.; Pierce, H.F. Environmental Influence on Typhoon Bobbie’s Precipitation Distribution. J. Appl. Meteorol. 1995, 34, 2513–2532. [Google Scholar] [CrossRef]
- Ayala, J.J.H.; Matyas, C.J. Tropical cyclone rainfall over Puerto Rico and its relations to environmental and storm-specific factors. Int. J. Clim. 2016, 36, 2223–2237. [Google Scholar] [CrossRef]
- Jiang, H.; Halverson, J.B.; Simpson, J.; Zipser, E.J. On the Differences in Storm Rainfall from Hurricanes Isidore and Lili. Part II: Water Budget. Weather Forecast. 2008, 23, 44–61. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.Y.; Halverson, J.B.; Simpson, J. On the Differences in Storm Rainfall from Hurricanes Isidore and Lili. Part I: Satellite Observations and Rain Potential. Weather Forecast. 2008, 23, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. The Climates of North America: According to a New Classification. Geogr. Rev. 1931, 21, 633. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Mackaro, J. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses. J. Clim. 2011, 24, 4907–4924. [Google Scholar] [CrossRef]
- Dunn, G.E.; Miller, B.I. Atlantic Hurricanes; Louisiana State University Press: Baton Rouge, LA, USA, 1964. [Google Scholar]
- Yu, Z.; Wang, Y.; Xu, H.; Davidson, N.; Chen, Y.; Chen, Y.; Yu, H. On the Relationship between Intensity and Rainfall Distribution in Tropical Cyclones Making Landfall over China. J. Appl. Meteorol. Clim. 2017, 56, 2883–2901. [Google Scholar] [CrossRef]
- Dehart, J.C.; Houze, R.A., Jr. Orographic Modification of Precipitation Processes in Hurricane Karl (2010). Mon. Weather Rev. 2017, 145, 4171–4186. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Savage, L.C., III. Effects of Landfall Location and the Approach Angle of a Cyclone Vortex Encountering a Mesoscale Mountain Range. J. Atmos. Sci. 2011, 68, 2095–2106. [Google Scholar] [CrossRef]
- Schubert, S.D.; Helfand, H.M.; Wu, C.-Y.; Min, W. Subseasonal Variations in Warm-Season Moisture Transport and Precipitation over the Central and Eastern United States. J. Clim. 1998, 11, 2530–2555. [Google Scholar] [CrossRef]
- Bender, M.A.; Tuleya, R.E.; Kurihara, Y. A Numerical Study of the Effect of a Mountain Range on a Landfalling Tropical Cyclone. Mon. Weather Rev. 1985, 113, 567–583. [Google Scholar] [CrossRef]
- Matyas, C.J. Quantifying the Shapes of U.S. Landfalling Tropical Cyclone Rain Shields. Prof. Geogr. 2007, 59, 158–172. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Matyas, C.J. Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteorol. Atmos. Phys. 2010, 106, 135–148. [Google Scholar] [CrossRef]
- Zhou, Y.; Matyas, C.; Li, H.; Tang, J. Conditions associated with rain field size for tropical cyclones landfalling over the Eastern United States. Atmos. Res. 2018, 214, 375–385. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation. NASA Greenbelt USA 2013, 28, 1. [Google Scholar]
- Chen, Y.; Ebert, E.E.; Walsh, K.J.E.; Davidson, N.E. Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos. 2013, 118, 2184–2196. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jovic, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Zick, S.E.; Matyas, C.J. Tropical cyclones in the North American Regional Reanalysis: The impact of satellite-derived precipitation over ocean. J. Geophys. Res. Atmos. 2015, 120, 8724–8742. [Google Scholar] [CrossRef] [Green Version]
- Zick, S.E.; Matyas, C.J. Tropical cyclones in the North American Regional Reanalysis: An assessment of spatial biases in location, intensity, and structure. J. Geophys. Res. Atmos. 2015, 120, 1651–1669. [Google Scholar] [CrossRef]
- DeMaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, J.L.; Zick, S.E. Regional Differences in the Spatial Patterns of North Atlantic Tropical Cyclone Rainbands Through Landfall. Southeast. Geogr. 2019, 59, 294–320. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Zagrodnik, J.P.; Jiang, H. Investigation of PR and TMI Version 6 and Version 7 Rainfall Algorithms in Landfalling Tropical Cyclones Relative to the NEXRAD Stage-IV Multisensor Precipitation Estimate Dataset. J. Appl. Meteorol. Clim. 2013, 52, 2809–2827. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Davis, C.A.; Fasullo, J. Water and energy budgets of hurricanes: Case studies of Ivan and Katrina. J. Geophys. Res. Atmos. 2007, 112, 11. [Google Scholar] [CrossRef]
- Zhou, Y.; Matyas, C.J. Spatial characteristics of storm-total rainfall swaths associated with tropical cyclones over the Eastern United States. Int. J. Clim. 2017, 37, 557–569. [Google Scholar] [CrossRef]
- Chu, P.-S. Large-Scale Circulation Features Associated with Decadal Variations of Tropical Cyclone Activity over the Central North Pacific. J. Clim. 2002, 15, 2678–2689. [Google Scholar] [CrossRef]
- Farfán, L.M.; Fogel, I. Influence of Tropical Cyclones on Humidity Patterns over Southern Baja California, Mexico. Mon. Weather Rev. 2007, 135, 1208–1224. [Google Scholar] [CrossRef]
- Inoue, M.; Handoh, I.C.; Bigg, G.R. Bimodal Distribution of Tropical Cyclogenesis in the Caribbean: Characteristics and Environmental Factors. J. Clim. 2002, 15, 2897–2905. [Google Scholar] [CrossRef]
- Deng, D.; Ritchie, E.A. Rainfall Characteristics of Recurving Tropical Cyclones over the Western North Pacific. J. Clim. 2018, 31, 575–592. [Google Scholar] [CrossRef]
- Wingo, M.T.; Cecil, D.J. Effects of Vertical Wind Shear on Tropical Cyclone Precipitation. Mon. Weather Rev. 2010, 138, 645–662. [Google Scholar] [CrossRef]
- Hart, R.E.; Evans, J.L.; Evans, C. Synoptic Composites of the Extratropical Transition Life Cycle of North Atlantic Tropical Cyclones: Factors Determining Posttransition Evolution. Mon. Weather Rev. 2006, 134, 553–578. [Google Scholar] [CrossRef] [Green Version]
- Lonfat, M.; Rogers, R.; Marchok, T.; Marks, F.D., Jr. A Parametric Model for Predicting Hurricane Rainfall. Mon. Weather Rev. 2007, 135, 3086–3097. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, K.; Jou, B.J.-D.; Lee, W.-C. Radar observation of precipitation asymmetries in tropical cyclones making landfall on East China coast. Trop. Cyclone Res. Rev. 2013, 2, 81–95. [Google Scholar]
- Gaona, M.F.R.; Villarini, G.; Zhang, W.; Vecchi, G.A. The added value of IMERG in characterizing rainfall in tropical cyclones. Atmos. Res. 2018, 209, 95–102. [Google Scholar] [CrossRef] [Green Version]
Storm Name | Year | Time Closest to Landfall in NARR Data | Max. Wind at Analysis Time (m/s) | End Phase | Hours from Analysis until Storm’s End |
---|---|---|---|---|---|
Charley | 1998 | 09 UTC 22 August | 23 | TS | 45 |
Frances | 1998 | 06 UTC 11 September | 23 | TS | 36 |
Bret | 1999 | 00 UTC 23 August | 51 | TS | 54 |
Fay | 2002 | 09 UTC 07 September | 26 | DS | 93 |
Claudette | 2003 | 15 UTC 15 July | 41 | DS | 45 |
Grace | 2003 | 12 UTC 31 August | 18 | TS | 48 |
Rita | 2005 | 09 UTC 24 September | 46 | DS | 51 |
Erin | 2007 | 12 UTC 16 August | 15 | DS | 84 |
Humberto | 2007 | 06 UTC 13 September | 41 | DS | 36 |
Dolly | 2008 | 18 UTC 23 July | 39 | DS | 84 |
Edouard | 2008 | 12 UTC 05 August | 28 | DS | 36 |
Ike | 2008 | 06 UTC 13 September | 49 | ET | 30 |
Storm Name | Year | Time Closest to Landfall in NARR Data | Max. Wind at Analysis Time (m/s) | End Phase | Hours from Analysis Until Storm’s End |
---|---|---|---|---|---|
Georges | 1998 | 12 UTC 28 September | 46 | TS | 72 |
Hermine | 1998 | 06 UTC 20 September | 18 | TS | 12 |
Helene | 2000 | 12 UTC 22 September | 18 | TS | 84 |
Barry | 2001 | 06 UTC 06 August | 31 | DS | 54 |
Hanna | 2002 | 09 UTC 14 September | 26 | TS | 32 |
Isidore | 2002 | 06 UTC 26 September | 28 | ET | 36 |
Lili | 2002 | 12 UTC 03 October | 41 | TS | 30 |
Bill | 2003 | 18 UTC 30 June | 26 | ET | 48 |
Ivan | 2004 | 06 UTC 16 September | 54 | ET | 198 |
Matthew | 2004 | 12 UTC 10 October | 15 | ET | 12 |
Arlene | 2005 | 18 UTC 11 June | 26 | ET | 48 |
Cindy | 2005 | 03 UTC 06 July | 33 | DS | 33 |
Dennis | 2005 | 18 UTC 10 July | 57 | TS | 186 |
Katrina | 2005 | 12 UTC 29 August | 57 | ET | 36 |
Gustav | 2008 | 15 UTC 01 September | 46 | ET | 75 |
Claudette | 2009 | 06 UTC 17 August | 21 | DS | 18 |
Isaac | 2012 | 09 UTC 29 August | 35 | TS | 51 |
Storm Name | Year | Time Closest to Landfall in NARR Data | Max. Wind at Analysis Time (m/s) | End Phase | Hours from Analysis Until Storm’s End |
---|---|---|---|---|---|
Earl | 1998 | 06 UTC 03 September | 36 | ET | 12 |
Mitch | 1998 | 12 UTC 05 November | 28 | ET | 6 |
Harvey | 1999 | 18 UTC 21 September | 26 | TS | 18 |
Irene | 1999 | 21 UTC 15 October | 35 | ET | 84 |
Gordon | 2000 | 03 UTC 18 September | 28 | ET | 15 |
Gabrielle | 2001 | 12 UTC 14 September | 31 | ET | 114 |
Henri | 2003 | 09 UTC 06 September | 15 | ET | 39 |
Bonnie | 2004 | 15 UTC 12 August | 19 | DS | 33 |
Charley | 2004 | 21 UTC 13 August | 62 | ET | 27 |
Wilma | 2005 | 09 UTC 24 October | 55 | ET | 39 |
Alberto | 2006 | 18 UTC 13 June | 18 | ET | 18 |
Barry | 2007 | 15 UTC 02 June | 15 | ET | 9 |
Fay | 2008 | 09 UTC 19 August | 28 | ET | 189 |
Debby | 2012 | 21 UTC 26 June | 18 | TS | 21 |
Data | Western vs. Central | Western vs. Eastern | Central vs. Eastern |
---|---|---|---|
Left, Right TPW t24 | 0.01 *, 1.00 | 0.82, 0.97 | <0.01 *, 0.87 |
Left, Right TPW t21 | <0.01 *, 0.33 | 0.63, 0.74 | <0.01 *, 0.40 |
Left, Right TPW t18 | <0.01 *, 0.66 | 0.78, 0.71 | 0.01 *, 0.71 |
Left, Right TPW t15 | 0.01 *, 0.47 | 0.49, 0.94 | 0.01 *, 0.52 |
Left, Right TPW t12 | 0.02 *, 0.65 | 0.90, 0.87 | 0.02 *, 0.68 |
Left, Right TPW t09 | <0.01 *, 0.28 | 0.90, 0.38 | 0.01 *, 0.83 |
Left, Right TPW t06 | 0.01 *, 0.25 | 0.82, 0.23 | <0.01 *, 0.98 |
Left, Right TPW t03 | 0.02 *, 0.14 | 0.63, 0.04 * | <0.01 *, 0.71 |
Left, Right TPW t00 | 0.02 *, 0.04 * | 0.12, 0.01 * | 0.01 *, 0.83 |
Data | Western Group | Central Group | Eastern Group |
---|---|---|---|
TPW left vs. right t24 | 0.01 * | 0.52 | <0.01 * |
TPW left vs. right t21 | <0.01 * | 0.21 | <0.01 * |
TPW left vs. right t18 | <0.01 * | 0.11 | <0.01 * |
TPW left vs. right t15 | 0.01 * | 0.07 | 0.01 * |
TPW left vs. right t12 | <0.01 * | 0.06 | 0.01 * |
TPW left vs. right t9 | <0.01 * | 0.05 * | <0.01 * |
TPW left vs. right t6 | <0.01 * | 0.03 * | <0.01 * |
TPW left vs. right t3 | 0.01 * | 0.01 * | <0.01 * |
TPW left vs. right t0 | 0.01 * | 0.01 * | <0.01 * |
TPW Conditions with Intensity | Vertical Wind Shear/Storm Motion | Moisture/Intensity and Shear/Motion | |
---|---|---|---|
Western Group | 8/12 (67%) | 8/12 (67%) | 7/12 (58%) |
Central Group | 11/17 (65%) | 14/17 (82%) | 8/17 (47%) |
Eastern Group | 12/14 (86%) | 4/14 (29%) | 4/14 (29%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Matyas, C.J.; Yan, G. Rainfall Symmetry Related to Moisture, Storm Intensity, and Vertical Wind Shear for Tropical Cyclones Landfalling over the U.S. Gulf Coastline. Atmosphere 2020, 11, 895. https://doi.org/10.3390/atmos11090895
Kim S, Matyas CJ, Yan G. Rainfall Symmetry Related to Moisture, Storm Intensity, and Vertical Wind Shear for Tropical Cyclones Landfalling over the U.S. Gulf Coastline. Atmosphere. 2020; 11(9):895. https://doi.org/10.3390/atmos11090895
Chicago/Turabian StyleKim, Sanghoon, Corene J. Matyas, and Guoqian Yan. 2020. "Rainfall Symmetry Related to Moisture, Storm Intensity, and Vertical Wind Shear for Tropical Cyclones Landfalling over the U.S. Gulf Coastline" Atmosphere 11, no. 9: 895. https://doi.org/10.3390/atmos11090895
APA StyleKim, S., Matyas, C. J., & Yan, G. (2020). Rainfall Symmetry Related to Moisture, Storm Intensity, and Vertical Wind Shear for Tropical Cyclones Landfalling over the U.S. Gulf Coastline. Atmosphere, 11(9), 895. https://doi.org/10.3390/atmos11090895