Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC
Abstract
:1. Introduction
2. HOTVOLC Ash Product Definition
2.1. Ash Cloud Detection (ASH-2, ASH-3, ASH-5)
- flagged pixels must fill both conditions simultaneously
- ○
- BT10.8−BT 12.0 < −0.5 K
- ○
- BT 8.7−BT 10.8 > −0.5 K
- flagged pixels that fill at least one condition are masked
- ○
- (RAD3.9−RAD12)/(RAD3.9 + RAD12) < Threshold−(night: 0.042−day: 0.055)
- ○
- (BT8.7−BT 12.0)/(BT 10.8−BT 13.4) > −0.05
- ○
- ((BT 10.8−BT 12.0)/BT 13.4)) × 100 > −0.35
- Remaining pixels must fill both conditions simultaneously
- ○
- BT10.8−BT 12.0 < −0.25 K
- ○
- BT 8.7−BT 10.8 > −2 K
- Finally, pixels that fill the following condition are masked:
- ○
- (RAD3.9−RAD12)/(RAD3.9 + RAD12) < Threshold−(night: 0.042−day: 0.055)
2.2. “Ash Plume Altitude” Product
2.3. “Ash Plume Mass” Product
- Ts the brightness temperature of the ground surface
- Tc the brightness temperature of the cloud top
- B the Planck function
- εs the emissivity of the ground surface
- εc the emissivity of the cloud
- tc Transmissivity of the cloud
- L the at-sensor spectral radiance
3. Case Study: The 3 July 2019 Stromboli Eruption
4. MOCAGE-Accident: Parametric Study
5. HOTVOLC vs. MOCAGE-Accident Comparison
6. Conclusions and Discussions
- Therefore, we first presented newly developed satellite products dedicated to ash clouds retrieval from HOTVOLC system. This includes: (i) “ASH-5 bands” product for improved ash discrimination, (ii) the “ash plume altitude” product providing the top altitude of the cloud, (iii) the “ash plume mass” product that stands for vertical column densities (VCD) and (iv) “ash plume contour” product showing a raw contour line around the cloud. Several eruptions have been characterized using these products, and in this study, we provide new results from the 24 December 2018 Etna eruption. Then, from a detailed sequence of the 3 July 2018 paroxysm at Stromboli, we demonstrate the ability of the HOTVOLC system to react quickly and to assist the Toulouse VAAC in the operational management of the eruptive crisis. This is particularly true at unmonitored volcanoes or when a VONA cannot be issued right in time.
- In the second part of the study, simulations of ash cloud transport and dispersion have been carried out using MOCAGE-Accident model run by the Toulouse VAAC, during the Eyjafjallajökull eruption on 17 April 2010. The first objective was to assess the model sensitivity to eruption source parameters. For this purpose, we tested a range of input variables of MOCAGE-Accident model, including the Total Grain Size Distribution (TGSD), the eruptive column profile, the top plume height and Mass eruption rate (MER), as well as the fine ash partitioning. Overall, the study of resulting VCD allows us to say that the MER is the parameter having the most impact. Importantly, since MER are inferred from ash column height (H), this means that the estimation of H is critical for the generation of accurate forecast ash maps. Finally, a comparison has been carried out on the same image of Eyjafjallajökull eruption between simulated VCD (from ash dispersion simulations run by MOCAGE-Accident model) and observed VCD (satellite retrieval using HOTVOLC products). In particular, the threshold envelope at 1 g/m2 computed by MOCAGE-Accident (see Figure 7 for input parameters) fits rather well with the one provided from satellite observations.
- New developments of the HOTVOLC system should be carried in the coming years. This includes in particular (i) the ingestion of atmospheric sounding data or 3D atmospheric weather forecast model. Such improvement must help estimating the ash cloud top altitude (H) by increasing the vertical temperature profile accuracy of the atmosphere. This is particularly important as H controls mostly the MER and hence the ash cloud concentration. (ii) We have shown that VCD can be derived with a relatively good accuracy, but the concentration (in g/m3) along the vertical cloud thickness is much more difficult to estimate, yet it is a critical parameter for aviation safety. For this purpose, the automated ingestion of Lidar transects within HOTVOLC interface should be valuable to better estimate systematically the plume top altitude and the cloud vertical thickness, which are essential for the MER estimation and the vertical concentration, respectively.
- Finally, the systematic use of the HOTVOLC interface by the Toulouse VAAC will be developed, as it constitutes a valuable help in terms of air risk management. This includes in particular (i) early and unambiguous detection of ash when VONA could not be issued by the volcano observatory (ii) near real-time comparison of observed and forecast ash concentration, cloud altitude and location. (iii) The wide range of eruptions archived on the HOTVOLC system will serve as test cases to train VAAC experts on ash cloud detection and the assessment of its dynamics over time.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gouhier, M.; Harris, A.; Calvari, S.; Labazuy, P.; Guéhenneux, Y.; Donnadieu, F.; Valade, S. Lava discharge during Etna’s January 2011 fire fountain tracked using MSG-SEVIRI. Bull. Volcanol. 2012, 74, 787–793. [Google Scholar] [CrossRef]
- Furtney, M.A.; Pritchard, M.E.; Biggs, J.; Carn, S.A.; Ebmeier, S.K.; Jay, J.A.; Kilbride, B.T.M.; Reath, K.A. Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring. J. Volcanol. Geotherm. Res. 2018, 365, 38–56. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P. On the retrieval of lava-flow surface temperatures from infrared satellite data. Geology 2003, 31, 893–896. [Google Scholar] [CrossRef]
- Wen, S.; Rose, W.I. Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. J. Geophys. Res. Atmos. 1994, 99, 5421–5431. [Google Scholar] [CrossRef]
- Holasek, R.E.; Self, S. GOES weather satellite observations and measurements of the May 18 1994, 1980, Mount St. Helens eruption. J. Geophys. Res. Solid Earth 1995, 100, 8469–8487. [Google Scholar] [CrossRef]
- Bonadonna, C.; Genco, R.; Gouhier, M.; Pistolesi, M.; Cioni, R.; Alfano, F.; Hoskuldsson, A.; Ripepe, M. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- ICAO EUR/NAT VACP. Volcanic Ash Contingency Plan—European and North Atlantic Regions; Eur Doc 019-NAT Doc 006, Part II; ICAO: Montreal, QC, Canada, 2016. [Google Scholar]
- Webley, P.; Mastin, L. Improved prediction and tracking of volcanic ash clouds. J. Volcanol. Geotherm. Res. 2009, 186, 1–9. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Spata, G.; D’Agostino, M.; Coltelli, M. Monitoring and forecasting Etna volcanic plumes. Nat. Hazards Earth Syst. Sci. 2009, 9, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Paris, R. SO2 and tephra emissions during the December 22, 2018 Anak Krakatau eruption. Volcanica 2019, 2, 91–103. [Google Scholar]
- Casadevall, T.J. (Ed.) Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety; US Government Printing Office: Washington, DC, USA, 1994; Volume 2047.
- ICAO. The Manual on Volcanic Ash, Radioactive Material and Toxic Chemical Clouds, 3rd ed.; ICAO Doc 9691; Contains Appendix F, Database for Encounters between Aircraft and Ash Clouds; ICAO: Montreal, QC, Canada, 2015. [Google Scholar]
- Beckett, F.M.; Witham, C.S.; Leadbetter, S.J.; Crocker, R.; Webster, H.N.; Hort, M.C.; Jones, A.R.; Devenish, B.J.; Thomson, D.J. Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud. Atmosphere 2020, 11, 352. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Guéhenneux, Y.; Labazuy, P.; Cacault, P.; Decriem, J.; Rivet, S. HOTVOLC: A web-based monitoring system for volcanic hot spots. Geol. Soc. Lond. Spec. Publ. 2016, 426, 223–241. [Google Scholar] [CrossRef]
- Hampton, S.J.; Cole, J.W.; Wilson, G.; Wilson, T.M.; Broom, S. Volcanic ashfall accumulation and loading on gutters and pitched roofs from laboratory empirical experiments: Implications for risk assessment. J. Volcanol. Geotherm. Res. 2015, 304, 237–252. [Google Scholar] [CrossRef]
- Wilson, T.M.; Jenkins, S.; Stewart, C. Impacts from volcanic ash fall. In Volcanic Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 47–86. [Google Scholar]
- Josse, B.; Simon, P.; Peuch, V.H. Radon global simulations with the multiscale chemistry and transport model MOCAGE. Tellus B Chem. Phys. Meteorol. 2004, 56, 339–356. [Google Scholar] [CrossRef]
- Prata, A.J. Infrared radiative transfer calculations for volcanic ash clouds. Geophys. Res. Lett. 1989, 16, 1293–1296. [Google Scholar] [CrossRef]
- Guéhenneux, Y.; Gouhier, M.; Labazuy, P. Improved space borne detection of volcanic ash for real-time monitoring using 3-Band method. J. Volcanol. Geotherm. Res. 2015, 293, 25–45. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust AVHRR Techniques (RAT) for environmental monitoring: Theory and applications. In Earth Surface Remote Sensing II; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; Volume 3496, pp. 101–113. [Google Scholar] [CrossRef]
- Pergola, N.; Pietrapertosa, C.; Lacava, T.; Tramutoli, V. Robust satellite technique for volcanic eruptions monitoring. Ann. Geophys. 2001, 44, 167–177. [Google Scholar] [CrossRef]
- Pergola, N.; Tramutoli, V.; Marchese, F.; Scaffidi, I.; Lacava, T. Improving volcanic ash cloud detection by a robust satellite technique. Remote Sens. Environ. 2004, 90, 1–22. [Google Scholar] [CrossRef]
- Ellrod, G.P.; Connel, B.H. Improvements in volcanic ash detection using GOES multispectral image data, Preprint volume 8th Conference on Aviation Range an Aerospace Meteorology. Am. Meteorol. Soc. 1999, 1, 326–329. [Google Scholar]
- Mosher, F.R. Four Channel Volcanic Ash Detection Algorithm. Aviation Weather Center Staff Publication.Navigation of AVHRR scheme: Accuracy assessment and validation. Remote Sens. Environ. 1999, 85, 190–203. [Google Scholar] [CrossRef]
- Ellrod, G.P.; Connell, B.H.; Hillger, D.W. Improved detection of airborne volcanic ash using multispectral infrared satellite data. J. Geophys. Res. 2003, 108, 4356. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J.; Grant, I.F. Retrieval of microphysical and morphological properties of volcanic ash clouds from satellite data: Application to Mt Ruapehu New Zealand. Q. J. R. Meteorol. Soc. 2001, 127, 2153–2179. [Google Scholar] [CrossRef]
- Yu, T.; Rose, W.I.; Prata, A.J. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using “split window” IR data from GOES and AVHRR. J. Geophys. Res. 2002, 107, AAC-10. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Feltz, W.F.; Heidinger, A.K.; Gallina, G.M. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J. Atmos. Ocean. Technol. 2006, 23, 1422. [Google Scholar] [CrossRef]
- Pavolonis, M.J. Advances in extracting cloud composition information from spaceborne infrared radiance—A robust alternative to brightness temperature, PART I: THEORY. J. Appl. Meteorol. Climatol. 2010, 49, 1992–2012. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Sieglaff, J. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Volcanic Ash: Detection and Height, Version 2.0, Report; NOAA: Silver Spring, MD, USA, 2010; p. 72. Available online: http://www.goes-r.gov/products/ATBDs/baselined/Aviation_VolAsh_v2.0_no_color.pdf (accessed on 12 August 2020).
- Francis, P.N.; Cooke, M.C.; Saunders, R.W. Retrieval of physical properties of volcanic ash using Meteosat: A case study from 2010 Eyjafjallajökull eruption. J. Geophys. Res. 2012, 117, D00U09. [Google Scholar] [CrossRef]
- Prata, A.J. Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens. 1989, 10, 751–761. [Google Scholar] [CrossRef]
- Watson, I.M.; Realmuto, V.J.; Rose, W.I.; Prata, A.J.; Bluth, G.J.; Gu, Y.; Bader, C.E.; Yu, T. Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer. J. Volcanol. Geotherm. Res. 2004, 135, 75–89. [Google Scholar] [CrossRef]
- Sagan, C.; Pollack, J.B. Anisotropic nonconservative scattering and the clouds of Venus. J. Geophys. Res. 1967, 72, 469–477. [Google Scholar] [CrossRef]
- Coakley, J.A., Jr.; Chylek, P. The two-stream approximation in radiative transfer: Including the angle of the incident radiation. J. Atmos. Sci. 1975, 32, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.H.; Wiscombe, W.J.; Weinman, J.A. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 1976, 33, 2452–2459. [Google Scholar] [CrossRef]
- Chazette, P.; Bocquet, M.; Royer, P.; Winiarek, V.; Raut, J.C.; Labazuy, P.; Gouhier, M.; Lardier, M.; Cariou, J.P. Eyjafjallajökull ash concentrations derived from both lidar and modeling. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Labazuy, P.; Gouhier, M.; Harris, A.; Guéhenneux, Y.; Hervo, M.; Bergès, J.C.; Fréville, P.; Cacault, P.; Rivet, S. Near real-time monitoring of the April–May 2010 Eyjafjallajökull ash cloud: An example of a web-based, satellite data-driven, reporting system. Int. J. Environ. Pollut. 2012, 48, 262–272. [Google Scholar] [CrossRef]
- Hervo, M.; Quennehen, B.; Kristiansen, N.I.; Boulon, J.; Stohl, A.; Fréville, P.; Pichon, J.M.; Picard, D.; Labazuy, P.; Gouhier, M.; et al. Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: Ground-based, Lidar and airborne measurements in France. Open Archive HAL 2012. [Google Scholar] [CrossRef] [Green Version]
- Dacre, H.F.; Grant, A.L.M.; Harvey, N.J.; Thomson, D.J.; Webster, H.N.; Marenco, F. Volcanic ash layer depth: Processes and mechanisms. Geophys. Res. Lett. 2015, 42, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Poret, M.; Costa, A.; Andronico, D.; Scollo, S.; Gouhier, M.; Cristaldi, A. Modeling Eruption Source Parameters by Integrating Field, Ground-Based, and Satellite-Based Measurements: The Case of the 23 February 2013 Etna Paroxysm. J. Geophys. Res. Solid Earth 2018, 123, 5427–5450. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near Real-Time Monitoring of the Christmas 2018 Etna Eruption Using SEVIRI and Products Validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Bilotta, G.; Bonaccorso, A.; Caltabiano, T.; Cappello, A.; Corradino, C.; Del Negro, C.; Ganci, G.; Neri, M.; Pecora, E.; et al. The VEI 2 Christmas 2018 Etna Eruption: A Small but Intense Eruptive Event or the Starting Phase of a Larger One? Remote Sens. 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- Bertagnini, A.; Di Roberto, A.; Pompilio, M. Paroxysmal activity at Stromboli: Lessons from the past. Bull. Volcanol. 2011, 73, 1229–1243. [Google Scholar] [CrossRef]
- Andronico, D.; Pistolesi, M. The November 2009 paroxysmal explosions at Stromboli. J. Volcanol. Geotherm. Res. 2010, 196, 120–125. [Google Scholar] [CrossRef]
- Josse, B. Représentation des Processus de Transport et de Lessivage Pour la Modélisation de la Composition Chimique de L’atmosphère à L’échelle Planétaire. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 2004. [Google Scholar]
- Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P.D. Modelling of primary aerosols in the chemical transport model MOCAGE: Development and evaluation of aerosol physical parameterizations. Geosci. Model Dev. 2015, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Mastin, L.G.; Guffanti, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.W.; Neri, A.; Rose, W.I.; et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 2009, 186, 10–21. [Google Scholar] [CrossRef]
- Gouhier, M.; Eychenne, J.; Azzaoui, N.; Guillin, A.; Deslandes, M.; Poret, M.; Costa, A.; Husson, P. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, T.; Costa, A.; Macedonio, G. A model for the numerical simulation of tephra fall deposits. J. Volcanol. Geotherm. Res. 2005, 140, 273–294. [Google Scholar] [CrossRef]
- Webster, H.N.; Thomson, D.J.; Johnson, B.T.; Heard, I.P.C.; Turnbull, K.; Marenco, F.; Kristiansen, N.I.; Dorsey, J.; Minikin, A.; Weinzierl, B.; et al. Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.A.; Millington, S.C.; Beckett, F.M.; Swindles, G.T.; Thordarson, T. Big grains go far: Understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash. Atmos. Meas. Tech. 2015, 8, 2069–2091. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Spinetti, C.; Carboni, E.; Tirelli, C.; Buongiorno, M.F.; Pugnaghi, S.; Gangale, G. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements. J. Appl. Remote Sens. 2008, 2, 023550. [Google Scholar] [CrossRef]
- Rose, W.I.; Durant, A.J. Fate of volcanic ash: Aggregation and fallout. Geology 2011, 39, 895–896. [Google Scholar] [CrossRef]
- Brown, R.J.; Bonadonna, C.; Durant, A.J. A review of volcanic ash aggregation. Phys. Chem. Earth Parts A/B/C 2012, 45, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Van Eaton, A.R.; Mastin, L.G.; Herzog, M.; Schwaiger, H.F.; Schneider, D.J.; Wallace, K.L.; Clarke, A.B. Hail formation triggers rapid ash aggregation in volcanic plumes. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Carazzo, G.; Jellinek, A.M. A new view of the dynamics, stability and longevity of volcanic clouds. Earth Planet. Sci. Lett. 2012, 325, 39–51. [Google Scholar] [CrossRef]
Case | Fraction (%) | TGSD | Profile | Plume Height (m) | MER (Kg/s) | Max VCD (g/m2) |
---|---|---|---|---|---|---|
a | 5 | Eyjafjallajökull 2010 | Uniform | 6584 | 3.5 × 105 | 190 |
b | 3.2 | Eyjafjallajökull 2010 | Uniform | 6584 | 3.5 × 105 | 122 |
c | 5 | Eyjafjallajökull 2010 | Uniform | 5584 | 1.8 × 105 | 91.7 |
d | 5 | Default | Uniform | 6584 | 3.5 × 105 | 199 |
e | 5 | Eyjafjallajökull 2010 | Umbrella (S_02_02) | 6584 | 3.5 × 105 | 192 |
f | 5 | Eyjafjallajökull 2010 | Umbrella (S_08_04) | 6584 | 3.5 × 105 | 206 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouhier, M.; Deslandes, M.; Guéhenneux, Y.; Hereil, P.; Cacault, P.; Josse, B. Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere 2020, 11, 864. https://doi.org/10.3390/atmos11080864
Gouhier M, Deslandes M, Guéhenneux Y, Hereil P, Cacault P, Josse B. Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere. 2020; 11(8):864. https://doi.org/10.3390/atmos11080864
Chicago/Turabian StyleGouhier, Mathieu, Mathieu Deslandes, Yannick Guéhenneux, Philippe Hereil, Philippe Cacault, and Béatrice Josse. 2020. "Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC" Atmosphere 11, no. 8: 864. https://doi.org/10.3390/atmos11080864
APA StyleGouhier, M., Deslandes, M., Guéhenneux, Y., Hereil, P., Cacault, P., & Josse, B. (2020). Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere, 11(8), 864. https://doi.org/10.3390/atmos11080864