Isomass and Probability Maps of Ash Fallout Due to Vulcanian Eruptions at Tungurahua Volcano (Ecuador) Deduced from Historical Forecasting
Abstract
:1. Introduction
1.1. Eruption Source Parameters and Forecasting System for Vulcanian Eruptions at Tungurahua Volcano
- Then, WRF generates the meteorology over Ecuador. Table 3 indicates the physical parameterization used for this component.
- Next, the meteorological output from the second sub-domain is input into FALL3D, which also uses the predefined ESP of Table 1. FALL3D writes the results into a NetCDF file. Hence, the forecasting system is based on an offline approach, without interactions between meteorology and volcanic ash in the atmosphere.
- Finally, the system generates animated (.gif) files, which are uploaded to the web page of the Grupo de Investigación sobre la Ceniza Volcánica en el Ecuador (GICVE, due to its nomenclature in Spanish; 2020) [20]. GICVE is a group of researchers interested in the study of the dispersion of volcanic ash in Ecuador.
1.2. Advisories by the Washington VAAC
1.3. Monitoring and Data of Tungurahua Volcano
- The variation of the isomass and probability maps of ash fallout due to Vulcanian eruptions at Tungurahua volcano;
- The relationship between ash fallout patterns with ash cloud direction at different FLs.
2. Method
2.1. Isomass and Probability Maps of Ash Fallout
2.2. Wind Direction at Tungurahua Volcano
- The shape was mapped into a GIS system, using the coordinates of corners of the polygon representing the shape of the detected ash cloud.
- The centroid of each ash cloud was obtained using GIS tools.
- Wind direction at corresponding FLs was deduced from the coordinates of centroids and coordinates of the vent.
- From the reported wind speed and direction of ash clouds, we generated wind roses for three ranges of FLs, classified in the same trimesters of isomass and probability maps of ash fallout.
3. Results
3.1. Isomass and Probability Maps of Ash Fallout
3.2. Wind Direction at Tungurahua Volcano
4. Discussion
5. Conclusions and Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Horwell, C.J.; Baxter, P.J. The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation. Bull. Volcanol. 2006, 69, 1–24. [Google Scholar] [CrossRef]
- Ayris, P.M.; Delmelle, P. The immediate environmental effects of tephra emission. Bull. Volcanol. 2012, 74, 1905–1936. [Google Scholar] [CrossRef]
- Wilson, T.M.; Stewart, C. Volcanic Ash. In Encyclopedia of Natural Hazards; Bobrowsky, P., Ed.; Springer: New York, NY, USA, 2013; p. 1135. [Google Scholar]
- Macedonio, G.; Costa, A.; Longo, A. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 2005, 31, 837–845. [Google Scholar] [CrossRef]
- Bonasia, R.; Scaini, C.; Capra, L.; Nathenson, M.; Siebe, C.; Arana-Salinas, L.; Folch, A. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): Implications for civil aviation safety. Bull. Volcanol. 2014, 76, 1–16. [Google Scholar] [CrossRef]
- Stewart, C.; Wilson, T.; Sword-Daniels, V.; Wallace, K.; Magill, C.; Horwell, C.; Leonard, G.; Baxter, P. Communication Demands of Volcanic Ashfall Events. Adv. Volcanol. 2016, 23–49. [Google Scholar]
- Le Pennec, J.L.; Ruiz, G.A.; Ramón, P.; Palacios, E.; Mothes, P.; Yepes, H. Impact of tephra falls on the Andean communities: The influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J. Volcanol. Geoth. Res. 2012, 217–218, 91–103. [Google Scholar] [CrossRef]
- Bernard, B.; Bustillos, J.; Wade, B.; Hidalgo, S. Influence of the wind direction variability on the quantification of tephra fallouts: December 2012 and March 2013 Tungurahua eruptions. Av. Cienc. Ing. 2013, 5, A14–A21. [Google Scholar]
- IG. Instituto Geofísico – Escuela Politécnica Nacional. Available online: https://www.igepn.edu.ec (accessed on 5 August 2020).
- Mothes, P.; Yepes, H.; Hall, M.; Ramón, P.; Steele, A.; Ruiz, M. The scientific–community interface over the fifteen-year eruptive episode of Tungurahua Volcano, Ecuador. J. Appl. Volcanol. 2015, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Biass, S.; Bonadonna, C.; Houghton, B. A step-by-step evaluation of empirical methods to quantify eruption source parameters from tephra-fall deposits. J. Appl. Volcanol. 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Parra, R.; Bernard, B.; Narváez, D.; Le Pennec, J.L.; Hasselle, N.; Folch, A. Eruption Source Parameters for forecasting ash dispersion and deposition from vulcanian eruptions at Tungurahua volcano: Insights from field data from the July 2013 eruption. J. Volcanol. Geoth. Res. 2016, 309, 1–13. [Google Scholar] [CrossRef]
- Mastin, L.G.; Guffani, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.W.; Neri, A.; Rose, W.I.; et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geoth. Res. 2009, 186, 10–21. [Google Scholar] [CrossRef]
- Suzuki, T. A theoretical model for dispersion of tephra. In Arc Volcanism: Physics and Tectonics; Shimozuru, D., Yokoyama, I., Eds.; Terrapub: Tokyo, Japan, 1983; pp. 95–113. [Google Scholar]
- Byun, D.; Schere, K. Review of the governing equations, computational algorithm and other components of the Model-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- WRF. Weather Research and Forecasting Model. Available online: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (accessed on 7 July 2020).
- Folch, A.; Costa, A.; Macedonio, G. FALL3D: A computational model for transport and deposition of volcanic ash. Comput. Geosci. 2009, 35, 1334–1342. [Google Scholar] [CrossRef]
- Parra, R. Influence of Spatial Resolution in Modeling the Dispersion of Volcanic Ash in Ecuador. WIT Trans. Ecol. Environ. 2019, 236, 67–68. [Google Scholar]
- GFS. Global Forecast System. Available online: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs (accessed on 6 August 2020).
- GICVE. Grupo de Investigación sobre la Ceniza Volcánica en el Ecuador. Available online: https://www.usfq.edu.ec/programas_academicos/colegios/politecnico/institutos/gicve/Paginas/default.aspx?Paged=TRUE&p_SortBehavior=0&p_FileLeafRef=20180529_04h00_Cot.gif&p_ID=491&PageFirstRow=61&&View=%7B8D270371-492C-417B-AE65-D2AE6C01E7DF%7D (accessed on 6 July 2020).
- Parra, R. Numerical system for forecasting volcanic ash dispersion in Ecuador. In Proceedings of the 2018 IEEE Third Ecuador Chapter Meeting (ETCM), Cuenca, Ecuador, 15–19 October 2018; pp. 1–5. [Google Scholar]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Barker, D.; Duda, M.; Huang, X.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; NCAR/TN-475+STR. NCAR Technical Note; National Center for Atmospheric Research Boulder: Boulder, CO, USA, 2008.
- Folch, A. A review of tephra transport and dispersal models: Evolution, current status, and future perspectives. J. Volcanol. Geoth. Res. 2012, 235–236, 96–115. [Google Scholar] [CrossRef]
- Washington VAAC. Washington DC Volcanic Ash Advisory Center. Available online: https://www.ssd.noaa.gov/VAAC/washington.html (accessed on 6 July 2020).
- Draxler, R.; Hess, G. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Bendix, J.; Rollenbeck, R.; Göttlicher, D.; Cermak, J. Cloud occurrence and cloud properties in Ecuador. Clim. Res. 2006, 30, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Protat, A.; Delanoë, J.; Strapp, J.W.; Fontaine, E.; Leroy, D.; Schwarzenboeck, A.; Lilie, L.; Davison, C.; Dezitter, F.; Grandin, A.; et al. The Measured Relationship between Ice Water Content and Cloud Radar Reflectivity in Tropical Convective Clouds. J. Appl. Meteor. Climatol. 2016, 55, 1707–1729. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Zach, I. Wind directions of volcanic ash-charged clouds in Ecuador – implications for the public and flight safety. Geomat. Nat. Haz. Risk. 2016, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Parra, R.; Cadena, E.; Flores, C. Maximum UV index records (2010–2014) in Quito (Ecuador) and its trend inferred from remote sensing data (1979–2018). Atmosphere 2019, 10, 787. [Google Scholar] [CrossRef] [Green Version]
- Tobar, V.; Wyseure, G. Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. Int. J. Climatol. 2017, 38, 1808–1819. [Google Scholar] [CrossRef]
- Erazo, B.; Bourrel, L.; Frappart, F.; Chimborazo, O.; Labat, D.; Dominguez-Granda, L.; Matamoros, D.; Mejia, R. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM) for Rainfall Variability over the Pacific Slope and Coast of Ecuador. Water 2018, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- CDS. ERA5 Monthly Averaged Data on Pressure Levels from 1979 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=overview (accessed on 22 July 2020).
- Asmerom, Y.; Baldini, J.; Prufer, K.; Polyak, V.; Ridley, H.; Aquino, V.; Baldini, L.; Breitenbach, S.; Macpherson, C.; Kennett, D. Intertropical convergence zone variability in the Neotropics during the Common Era. Sci. Adv. 2020, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, A. Unsteady explosive activity: Vulcanian eruptions. In Modelling Volcanic Processes. The Physics and Mathematics of Volcanism; Cambridge University Press: New York, NY, USA, 2013; pp. 107–128. [Google Scholar]
Parameter | Description/Reference |
---|---|
Height above the vent | 8.80 km (3 min), followed by column height of 4.85 km (22 min). |
Mass flow rate | Based on Mastin et al. (2009) [13] |
Source type | Suzuki (1983) [14] (with A = 5 and L = 10), which concentrates mass at the column top, in agreement with a Vulcanian eruption |
Total grain size distribution | bi-Gaussian (mean ø values of 4 and 0.5) |
Circularity 1 range | 0.77–0.91 (unitless) |
Horizontal turbulence scheme | Evaluated as in the Community Multiscale Air Quality (CMAQ) Modeling System [15] |
Parameter | Eruption Date | ||
---|---|---|---|
14 July 2013 | 16 December 2012 | 01 February 2014 | |
R2 | 0.72 | 0.99 | 0.87 |
Parameter a (perfect fitting = 1) | 0.67 | 1.61 | 0.33 |
Parameter b (perfect fitting = 0) | 0.30 | 0.07 | 0.08 |
Component | Option | Scheme/Model |
---|---|---|
Microphysics | 16 | Double moment 6-class scheme |
Planetary Boundary Layer | 1 | Yonsei University (YSU) |
Cumulus Parameterization | 5 | Grell 3D ensemble |
Shortwave | 1 | Dudhia scheme |
Longwave | 1 | Rapid Radiative Transfer Model (RRTM) |
Land Surface | 1 | 5-layer thermal diffusion scheme |
Surface Layer | 2 | Eta similarity scheme |
Direction | Trimester | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FMA | MJJ | ASO | NDJ | |||||||||
10% | 50% | 70% | 10% | 50% | 70% | 10% | 50% | 70% | 10% | 50% | 70% | |
W | 250 km | 90 km | 67 km | 330 km | 175 km | 100 km | 327 km | 132 km | 90 km | 198 km | 77 km | 57 km |
N | 90 km | 22 km | 17 km | 30 km | 18 km | 15 km | 33 km | 18 km | 14 km | 105 km | 22 km | 17 km |
E | 57 km | 15 km | 13 km | 21 km | 13 km | 12 km | 24 km | 14 km | 13 km | 65 km | 18 km | 14 km |
S | 100 km | 20 km | 15 km | 35 km | 18 km | 14 km | 56 km | 19 km | 15 km | 123 km | 23 km | 16 km |
Code | City | Trimester | |||
---|---|---|---|---|---|
FMA | MJJ | ASO | NDJ | ||
1 | Quito | 5% | <5% | <5% | 5% |
2 | Guayaquil | 10% | 30% | 20% | 10% |
3 | Cuenca | <5% | <5% | <5% | <5% |
5 | Santo Domingo | 10% | 10% | 10% | 10% |
7 | Ambato | 50% | 60% | 50% | 50% |
8 | Guaranda | 70% | 90% | 80% | 60% |
9 | Riobamba | 70% | 70% | 70% | 70% |
11 | Babahoyo | 30% | 60% | 40% | 25% |
14 | Puyo | 10% | <5% | <5% | 20% |
15 | Macas | 10% | <5% | <5% | 15% |
Code | City | Dates (dd mm yy) | Total | % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
28 05 10 | 23 11 10 | 21 08 12 | 16 12 12 | 14 07 13 | 18 10 13 | 01 02 14 | 26 02 16 | ||||
1 | Quito | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | Guayaquil | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 13 |
3 | Cuenca | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 13 |
5 | Santo Domingo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | Ambato | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 3 | 38 |
8 | Guaranda | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 25 |
9 | Riobamba | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 38 |
11 | Babahoyo | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 13 |
14 | Puyo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | Macas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, R.; Cadena, E.; Paz, J.; Medina, D. Isomass and Probability Maps of Ash Fallout Due to Vulcanian Eruptions at Tungurahua Volcano (Ecuador) Deduced from Historical Forecasting. Atmosphere 2020, 11, 861. https://doi.org/10.3390/atmos11080861
Parra R, Cadena E, Paz J, Medina D. Isomass and Probability Maps of Ash Fallout Due to Vulcanian Eruptions at Tungurahua Volcano (Ecuador) Deduced from Historical Forecasting. Atmosphere. 2020; 11(8):861. https://doi.org/10.3390/atmos11080861
Chicago/Turabian StyleParra, René, Eliana Cadena, Joselyne Paz, and Diana Medina. 2020. "Isomass and Probability Maps of Ash Fallout Due to Vulcanian Eruptions at Tungurahua Volcano (Ecuador) Deduced from Historical Forecasting" Atmosphere 11, no. 8: 861. https://doi.org/10.3390/atmos11080861
APA StyleParra, R., Cadena, E., Paz, J., & Medina, D. (2020). Isomass and Probability Maps of Ash Fallout Due to Vulcanian Eruptions at Tungurahua Volcano (Ecuador) Deduced from Historical Forecasting. Atmosphere, 11(8), 861. https://doi.org/10.3390/atmos11080861