Next Article in Journal
Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC
Next Article in Special Issue
Observational Practices for Urban Microclimates Using Meteorologically Instrumented Unmanned Aircraft Systems
Previous Article in Journal
Modeling Emissions from Concentrated Sources into Large-Scale Models: Theory and apriori Testing
Previous Article in Special Issue
Impacts of Vegetation and Topography on Land Surface Temperature Variability over the Semi-Arid Mountain Cities of Saudi Arabia
Open AccessArticle

Analysis of Cooling and Humidification Effects of Different Coverage Types in Small Green Spaces (SGS) in the Context of Urban Homogenization: A Case of HAU Campus Green Spaces in Summer in Zhengzhou, China

1
Department of Landscape Planning and Regional Development, Faculty of Landscape Architecture and Urbanism, Szent István University, 1118 Budapest, Hungary
2
Department of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
3
CMA Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450003, China
4
Henan Provincial Climate Centre, Zhengzhou 450003, China
5
Department of Climatology and Landscape Ecology, University of Szeged, 6722 Szeged, Hungary
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Atmosphere 2020, 11(8), 862; https://doi.org/10.3390/atmos11080862
Received: 29 June 2020 / Revised: 2 August 2020 / Accepted: 12 August 2020 / Published: 14 August 2020
(This article belongs to the Special Issue Interaction between Urban Microclimates and the Buildings)
In the context of global warming, more and more cities are experiencing extreme Urban Heat Island (UHI) effects and extreme weather phenomena, but urban green spaces are proven to mitigate UHI. Most of UHI’s research focuses on the large scale and uses remote sensing methods, which do not reflect the dynamic characteristics in detail and do not detect internal influencing factors of the green space cooling effect. Therefore, this study focused on Small Green Spaces (SGS), carrying out the measurement of the meteorological parameters (temperature, relative humidity, wind direction, wind speed, photosynthetic radiation) of the 16 sites in four types of coverage (Impervious surface; Shrub-grass; Tree-grass; Tree-shrub-grass) in a university campus. At the same time, the coverage characteristic parameters, such as Canopy Density (CD), Leaf Area Index (LAI), Photosynthetically Active Radiation (PAR), Mean Leaf Angle (MLA), of each plot were analyzed and compared. The results showed that there were significant differences in temperature among different coverage types in SGS. The biggest difference was concentrated in the noon period when solar radiation is strongest during the day. The difference between the four types of coverage with vegetation at night was small. The maximum air temperature difference among the four types could reach 8.9 ℃ and the maximum relative humidity difference was 28.5%. The cooling effect of the multi-layer vegetation-covered (Tree-shrub-grass) area was the largest compared to the impervious surface, indicating that tree cover was the core factor affecting the temperature. Temperature and relative humidity had a close correlation with surface coverage types and some plant community characteristics (such as CD and LAI). The cooling and humidifying effects of plants were also related to PAR and leaf angle. The results provide suggestions for green space management and landscape design. View Full-Text
Keywords: microclimate; small green spaces (SGS); cooling and humidifying effect; coverage type microclimate; small green spaces (SGS); cooling and humidifying effect; coverage type
Show Figures

Figure 1

MDPI and ACS Style

Li, H.; Meng, H.; He, R.; Lei, Y.; Guo, Y.; Ernest, A.-A.; Jombach, S.; Tian, G. Analysis of Cooling and Humidification Effects of Different Coverage Types in Small Green Spaces (SGS) in the Context of Urban Homogenization: A Case of HAU Campus Green Spaces in Summer in Zhengzhou, China. Atmosphere 2020, 11, 862.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop