Interdecadal Variations in Extreme High–Temperature Events over Southern China in the Early 2000s and the Influence of the Pacific Decadal Oscillation
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Description of the Numerical Model and Experiments
2.3. Methods
2.4. Definition of Extreme High-Temperature Events
3. Results
3.1. The Characteristics of Interdecadal Variations in the Frequency of Extreme High–Temperature Events (FEHE) over Southern China
3.2. The Synoptic Surface Heat Fluxes and Atmospheric Circulation Anomalies Associated with the EHEs over Southern China
3.3. The Interdecadal Variations of Surface Heat Fluxes and Atmospheric Circulation
3.4. The Role Played by the Pacific Decadal Oscillation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 2004, 31, 114–143. [Google Scholar] [CrossRef] [Green Version]
- Greene, S.; Kalkstein, L.S.; Mills, D.M.; Samenow, J. An examination of climate change on extreme heat events and climate–mortality relationships in large US cities. Weather Clim. Soc. 2011, 3, 281–292. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.B.; Zwiers, F.W.; Song, L.C.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Wong, T.S.T. Statistical analysis of heat waves in the state of Victoria in Australia. Aust. N. Z. J. Stat. 2015, 57, 463–480. [Google Scholar] [CrossRef]
- Shi, N.; Wang, Y.C.; Wang, X.Q.; Tian, P.Y. Interdecadal variations in the frequency of persistent hot events in boreal summer over midlatitude Eurasia. J. Clim. 2019, 32, 5161–5177. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García–Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Chen, W. An abrupt increase in the summer high temperature extreme days across China in the mid–1990 s. Adv. Atmos. Sci. 2011, 28, 1023–1029. [Google Scholar] [CrossRef]
- Peng, J.B. An investigation of the formation of the heat wave in southern China in summer 2013 and the relevant abnormal subtropical high activities. Atmos. Ocean. Sci. Lett. 2014, 7, 286–290. [Google Scholar]
- Nitschke, M.; Tucker, G.R.; Hansen, A.L.; Williams, S.; Zhang, Y.; Bi, P. Impact of two recent extreme heat episodes on morbidity and mortality in Adelaide, South Australia: A case–series analysis. Environ. Health 2011, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Chen, W. Climatology and trends of high temperature extremes across China in summer. Atmos. Ocean. Sci. Lett. 2009, 2, 153–158. [Google Scholar]
- Gong, D.Y.; Pan, Y.Z.; Wang, J.A. Changes in extreme daily mean temperatures in summer in eastern China during 1955–2000. Theor. Appl. Climatol. 2004, 77, 25–37. [Google Scholar]
- Zhou, Y.Q.; Ren, G.Y. Change in extreme temperature event frequency over mainland China, 1961–2008. Clim. Res. 2011, 50, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ren, G.Y.; Liu, J.; Zhou, Y.Q.; Feng, Y.W. Urban effect on trends of extreme temperature indices at Beijing meteorological station. Chin. J. Geophys. 2011, 54, 1150–1159. (In Chinese) [Google Scholar]
- Chen, H.P.; Sun, J.Q. Projected changes in climate extremes in China in a 1.5 °C warmer world. Int. J. Climatol. 2018, 38, 3607–3617. [Google Scholar] [CrossRef]
- Wang, H.J.; Sun, J.Q.; Chen, H.P.; Zhu, Y.L.; Zhang, Y.; Jiang, D.B.; Lang, X.M.; Fan, K.; Yu, E.T.; Yang, S. Extreme climate in China: Facts, simulation and projection. Meteorol. Z. 2012, 21, 279–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.L.; Dong, W.J.; Cao, L.J.; Sparrow, M. A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett. 2006, 33, L24702. [Google Scholar] [CrossRef]
- Wang, H.J. The weakening of the Asian monsoon circulation after the end of 1970s. Adv. Atmos. Sci. 2001, 18, 376–386. [Google Scholar]
- Hu, Z.Z. Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. J. Geophys. Res. Atmos. 1997, 102, 19403–19412. [Google Scholar] [CrossRef]
- Sun, B.; Zhu, Y.L.; Wang, H.J. The recent interdecadal and interannual variation of water vapor transport over eastern China. Adv. Atmos. Sci. 2011, 28, 1039–1048. [Google Scholar] [CrossRef]
- Xu, X.P.; Li, F.; He, S.P.; Wang, H.J. Subseasonal reversal of East Asian surface temperature variability in winter 2014/15. Adv. Atmos. Sci. 2018, 35, 737–752. [Google Scholar] [CrossRef]
- Zhu, B.Y.; Sun, B.; Wang, H.J. Dominant modes of interannual variability of extreme high-temperature events in eastern China during summer and associated mechanisms. Int. J. Climatol. 2020, 40, 841–857. [Google Scholar] [CrossRef]
- Li, R.X.; Sun, J.Q. Interdecadal variability of the large–scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patterns. Atmos. Ocean. Sci. Lett. 2018, 11, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.W.; Jiang, Z.H.; Li, J.P.; Zhong, S.S.; Wang, L.J. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Clim. Dyn. 2012, 39, 2393–2402. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W.H.; Yan, Z.W. Changes in hot days and heat waves in China during 1961–2007. Int. J. Climatol. 2010, 30, 1452–1462. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Aguilar, E.; Pepin, N.; Flügel, W.A.; Yan, Y.P.; Xu, Y.W.; Zhang, Y.J.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Chen, R.D.; Lu, R.Y. Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Clim. 2015, 28, 5830–5844. [Google Scholar] [CrossRef]
- Chen, W.; Lu, R.Y. A decadal shift of summer surface air temperature over Northeast Asia around the mid–1990s. Adv. Atmos. Sci. 2014, 31, 735–742. [Google Scholar] [CrossRef]
- Chen, W.; Hong, X.W.; Lu, R.Y.; Jin, A.F.; Jin, S.Z.; Nam, J.C.; Shin, J.H.; Goo, T.Y.; Kim, B.J. Variation in summer surface air temperature over northeast Asia and its associated circulation anomalies. Adv. Atmos. Sci. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Sun, J.Q.; Wang, H.J.; Yuan, W. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Clim. Environ. Res. 2011, 16, 199–208. (In Chinese) [Google Scholar]
- Chen, R.D.; Wen, Z.P.; Lu, R.Y. Interdecadal change on the relationship between the mid–summer temperature in South China and atmospheric circulation and sea surface temperature. Clim. Dyn. 2018, 51, 2113–2126. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhou, W.; Li, X.Z.; Wang, X.; Wang, D.X. Synoptic–scale characteristics and atmospheric controls of summer heat waves in China. Clim. Dyn. 2016, 46, 2923–2941. [Google Scholar] [CrossRef]
- Chen, R.D.; Wen, Z.P.; Lu, R.Y. Evolution of the circulation anomalies and the quasi–biweekly oscillations associated with extreme heat events in southern China. J. Clim. 2016, 29, 6909–6921. [Google Scholar] [CrossRef]
- Hu, K.M.; Huang, G.; Huang, R.H. The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Clim. 2011, 24, 5365–5377. [Google Scholar] [CrossRef]
- Hu, K.M.; Huang, G.; Qu, X.; Huang, R.H. The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River Valley in late summer. Adv. Atmos. Sci. 2012, 29, 91–101. [Google Scholar] [CrossRef]
- Li, H.X.; Chen, H.P.; Wang, H.J.; Sun, J.Q.; Ma, J.H. Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? J. Clim. 2018, 31, 4705–4725. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhou, W.; Chen, D.L. Summer high temperature extremes in Southeast China: Bonding with the El Niño–Southern Oscillation and East Asian summer monsoon coupled system. J. Clim. 2014, 27, 4122–4138. [Google Scholar] [CrossRef] [Green Version]
- You, Q.L.; Jiang, Z.H.; Kong, L.; Wu, Z.W.; Bao, Y.T.; Kang, S.C.; Pepin, N. A comparison of heat wave climatologies and trends in China based on multiple definitions. Clim. Dyn. 2017, 48, 3975–3989. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.G.; Wen, Z.P.; Yang, S.; Li, Y.Q. An interdecadal change in southern China summer rainfall around 1992/93. J. Clim. 2010, 23, 2389–2403. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Wang, H.J.; Ma, J.H.; Wang, T.; Sun, J.Q. Contribution of the phase transition of Pacific decadal oscillation to the late 1990 s’ shift in East China summer rainfall. J. Geophys. Res. Atmos. 2015, 120, 8817–8827. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.L.; Wang, H.J.; Zhou, W.; Ma, J.H. Recent changes in the summer precipitation pattern in East China and the background circulation. Clim. Dyn. 2011, 36, 1463–1473. [Google Scholar] [CrossRef]
- Ha, Y.; Zhong, Z.; Chen, H.S.; Hu, Y.J. Out–of–phase decadal changes in boreal summer rainfall between Yellow–Huaihe River Valley and southern China around 2002/2003. Clim. Dyn. 2016, 47, 137–158. [Google Scholar] [CrossRef]
- Ding, Y.H.; Sun, Y.; Wang, Z.Y.; Zhu, Y.X.; Song, Y.F. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol. 2009, 29, 1926–1944. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Fan, K.; Wang, H.J. Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J. Clim. 2015, 28, 4086–4106. [Google Scholar] [CrossRef]
- Chen, H.P.; Sun, J.Q.; Fan, K. Decadal features of heavy rainfall events in eastern China. Acta Meteorol. Sin. 2012, 26, 289–303. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. (In Chinese) [Google Scholar]
- Xu, Y.; Gao, X.J.; Yan, S.; Xu, C.H.; Ying, S.; Giorgi, F. A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci. 2009, 26, 763–772. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J.; Giorgi, F.; Chen, D.L. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset. Int. J. Climatol. 2017, 37, 788–800. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.J.; Zhou, B.T.; Li, H. Interdecadal variation in the synoptic features of Mei–Yu in the Yangtze River Valley region and relationship with the Pacific decadal oscillation. J. Clim. 2019, 32, 6251–6270. [Google Scholar] [CrossRef]
- Chen, H.P.; Sun, J.Q.; Li, H.X. Future changes in precipitation extremes over China using the NEX–GDDP high–resolution daily downscaled data-set. Atmos. Ocean. Sci. Lett. 2017, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, S.F.; Jiang, D.B.; Lian, Y.; Yao, Y.X. Trends in day–to–day variability of surface air temperature in China during 1961–2012. Atmos. Ocean. Sci. Lett. 2017, 10, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.; Parker, D.E.; Horton, E.; Folland, C.K.; Alexander, L.V.; Rowell, D.; Kent, E.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Huang, B.Y.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO–like interdecadal variability: 1900–93. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Neale, R.B.; Chen, C.C.; Gettelman, A.; Lauritzen, P.H.; Park, S.; Williamson, D.L.; Conley, A.J.; Garcia, R.; Kinnison, D.; Lamarque, J.F. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN–486+ STR 2010, 1, 1–12. [Google Scholar]
- Simmonds, I.; Bi, D.; Hope, P. Atmospheric water vapor flux and its association with rainfall over China in summer. J. Clim. 1999, 12, 1353–1367. [Google Scholar] [CrossRef]
- Li, Q.X.; Huang, J.Y. Threshold values on extreme high temperature events in China. J. Appl. Meteorol. Sci. 2011, 22, 138–144. (In Chinese) [Google Scholar]
- Fyfe, J.C.; Gillett, N.P.; Zwiers, F.W. Overestimated global warming over the past 20 years. Nat. Clim. Chang. 2013, 3, 767–769. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earths Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Chen, S.F.; Wu, R.G.; Liu, Y. Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Clim. 2016, 29, 1109–1125. [Google Scholar] [CrossRef]
- Sun, B. Seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring and the associated surface heat budget. Atmos. Ocean. Sci. Lett. 2017, 10, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Tokinaga, H.; Xie, S.; Deser, C.; Kosaka, Y.; Okumura, Y.M. Slowdown of the Walker circulation driven by tropical Indo–Pacific warming. Nature 2012, 491, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.J.; Latif, M.J.; Park, W.S.; Keenlyside, N.S.; Semenov, V.A.; Martin, T. Twentieth century Walker circulation change: Data analysis and model experiments. Clim. Dyn. 2012, 38, 1757–1773. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Qu, X.; Huang, G. Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int. J. Climatol. 2012, 32, 2073–2080. [Google Scholar] [CrossRef]
- Sun, B.; Li, H.X.; Zhou, B.T. Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate. Geophys. Res. Lett. 2019, 46, 12388–12397. [Google Scholar] [CrossRef]
- Hu, K.M.; Huang, G.; Wu, R.G. A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River valley since the late 1980s. J. Clim. 2013, 26, 2205–2221. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.J.; Yu, R.C.; Zhang, J.; Drange, H.; Cassou, C.; Deser, C.; Hodson, D.L.; Sanchez–Gomez, E.; Li, J.; Keenlyside, N. Why the western Pacific subtropical high has extended westward since the late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.T.; Wu, R.G. Interannual and decadal variations of snow cover over Qinghai–Xizang Plateau and their relationships to summer monsoon rainfall in China. Adv. Atmos. Sci. 2000, 17, 18–30. [Google Scholar]
- Gong, D.Y.; Ho, C.H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett. 2002, 29, 1436. [Google Scholar] [CrossRef]
- Dong, B.; Dai, A. The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Clim. Dyn. 2015, 45, 2667–2681. [Google Scholar] [CrossRef]
- Loikith, P.C.; Detzer, J.; Mechoso, C.R.; Lee, H.; Barkhordarian, A. The influence of recurrent modes of climate variability on the occurrence of monthly temperature extremes over South America. J. Geophys. Res. Atmos. 2017, 122, 10297–10311. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Sugi, M. Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim. Dyn. 2003, 21, 233–242. [Google Scholar] [CrossRef]
- Hartmann, B.; Wendler, G. The significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Clim. 2005, 18, 4824–4839. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Walsh, J.E. Atmospheric circulation patterns associated with monthly and daily temperature and precipitation extremes in Alaska. Int. J. Climatol. 2017, 37, 208–217. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Sun, B.; Li, H.; Wang, H. Interdecadal Variations in Extreme High–Temperature Events over Southern China in the Early 2000s and the Influence of the Pacific Decadal Oscillation. Atmosphere 2020, 11, 829. https://doi.org/10.3390/atmos11080829
Zhu B, Sun B, Li H, Wang H. Interdecadal Variations in Extreme High–Temperature Events over Southern China in the Early 2000s and the Influence of the Pacific Decadal Oscillation. Atmosphere. 2020; 11(8):829. https://doi.org/10.3390/atmos11080829
Chicago/Turabian StyleZhu, Baoyan, Bo Sun, Hua Li, and Huijun Wang. 2020. "Interdecadal Variations in Extreme High–Temperature Events over Southern China in the Early 2000s and the Influence of the Pacific Decadal Oscillation" Atmosphere 11, no. 8: 829. https://doi.org/10.3390/atmos11080829
APA StyleZhu, B., Sun, B., Li, H., & Wang, H. (2020). Interdecadal Variations in Extreme High–Temperature Events over Southern China in the Early 2000s and the Influence of the Pacific Decadal Oscillation. Atmosphere, 11(8), 829. https://doi.org/10.3390/atmos11080829