Groundwater Vulnerability in the Piedmont Region under Climate Change
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Overview of the Methodology
3.2. Quantity Approach
3.2.1. Climate Data and Water Availability
3.2.2. Potential Evapotranspiration (ET0)
- ET0
- monthly potential evapotranspiration (mm);
- Ti
- average monthly temperature [°C], ET0 = 0 if mean temperature < 0;
- I
- heat index (Equation (2));
- α
- complex function of heat index (Equation (3)).
- Ti
- monthly air temperature.
- I
- annual heat index.
3.2.3. Crop Evapotranspiration (ETc) and Water Availability (WA)
- ETc
- land cover evapotranspiration (mm);
- ET0
- potential evapotranspiration (mm);
- Kc
- crop coefficient (dimensionless).
- AETc
- actual land cover evapotranspiration (mm);
- PP
- total annual precipitation (mm);
- φ
- aridity index (Equation (6)).
- WA
- water availability (mm);
- PP
- total annual precipitation (mm);
- AETc
- actual land cover evapotranspiration (mm).
3.2.4. Terrain Data and Infiltration Map
3.3. Quality Approach
3.3.1. Aquifers Data
3.3.2. Land Cover Data
3.3.3. NO3 Data
3.4. Groundwater Vulnerability Mapping and Validation
- GW V = Groundwater vulnerability;
- WA = Water availability;
- AV = Vulnerability factor of aquifer;
- PIM = Potential infiltration map;
- PLI = Pollution load index;
- NO3 = Nitrate;
- As = Arsenic.
4. Results
4.1. Variation of Water Availability (WA)
4.2. Variation of Pollution Load Index (PLI)
4.3. Groundwater Vulnerability Map
5. Discussion
6. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Kazakis, N.; Oikonomidis, D.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment with disparate models in karstic, porous, and fissured rock aquifers using remote sensing techniques and GIS in Anthemountas basin, Greece. Environ. Earth. Sci. 2015, 74, 6199–6209. [Google Scholar] [CrossRef]
- Antonakos, A.K.; Lambrakis, N.J. Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. J. Hydrol. 2007, 333, 288–304. [Google Scholar] [CrossRef]
- Loaciaga, H.A.; Maidment, D.R.; Valdes, J.B. Climate-change impacts in a regional karst aquifer, Texas, USA. J. Hydrol. 2007, 227, 173–194. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 229–269. [Google Scholar]
- IPCC. Climate change 2001: The scientific basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Haeberli, W.R.; Frauenfelder, R.; Hoelzle, M.; Maisch, M. On rates and acceleration trends of global glacier mass changes. Geogr. Ann. Ser. A Phys. Geogr. 1999, 81, 585–595. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Rahardjo, H.; Nistor, M.M.; Gofar, N.; Satyanaga, A.; Xiaosheng, Q.; Chui Yee, S.I. Spatial distribution, variation and trend of five-day antecedent rainfall in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 1–15. [Google Scholar] [CrossRef]
- Taylor, R.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; LeBlanc, M.; Famiglietti, J.; Edmunds, M.; et al. Groundwater and climate change. Nat. Clim. Chang. 2012. [Google Scholar] [CrossRef] [Green Version]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M.D.; Earman, S. Western ground water and climate change—Pivotal to supply sustainability or vulnerable in its own right? Gr. Water 2007, 4, 4–5. [Google Scholar]
- Dezsi, Ş.; Mîndrescu, M.; Petrea, D.; Rai, P.K.; Hamann, A.; Nistor, M.M. High resolution projections of evapotranspiration and water availability for Europe under climate change. Int. J. Climatol. 2018, 38, 3832–3841. [Google Scholar] [CrossRef]
- Hamann, A.; Wang, T.L. Models of climatic normals for genecology and climate change studies in British Columbia. Agric. For. Meteorol. 2005, 128, 211–221. [Google Scholar] [CrossRef]
- Hamann, A.; Wang, T.; Spittlehouse, D.L.; Murdock, T.Q. A comprehensive, highresolution database of historical and projected climate surfaces for western North America. Bull. Am. Meteorol. Soc. 2013, 94, 1307–1309. [Google Scholar] [CrossRef]
- The Canadian Centre for Climate Modelling and Analysis. The First Generation Coupled Global Climate Model Publishing Web. 2014. Available online: http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=540909E4-1 (accessed on 20 March 2015).
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nistor, M.M. Climate change effect on groundwater resources in South East Europe during 21st century. Quat. Int. 2019, 504, 171–180. [Google Scholar] [CrossRef]
- Nistor, M.M.; Ronchetti, F.; Corsini, A.; Cheval, S.; Dumitrescu, A.; Rai, P.K.; Petrea, D.; Dezsi, Ş. Crop evapotranspiration variation under climate change in South East Europe during 1991–2050. Carpathian J. Earth Environ. Sci. 2017, 12, 571–582. [Google Scholar]
- Galleani, L.; Vigna, B.; Banzato, C.; Lo Russo, S. Validation of a Vulnerability Estimator for Spring Protection Areas: The VESPA index. J. Hydrol. 2011, 396, 233–245. [Google Scholar] [CrossRef]
- Brenner, S.; Coxon, G.; Howden, N.J.K.; Freer, G.; Hartmann, A. Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England. Nat. Hazards Earth Syst. Sci. 2018, 18, 445–461. [Google Scholar] [CrossRef] [Green Version]
- Krogulec, E. Intrinsic and Specific Vulnerability of Groundwater in a River Valley—Assessment, Verification and Analysis of Uncertainty. J. Earth Sci. Clim. Chang. 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Neukum, C.; Hötzl, H.; Himmelsbach, T. Validation of vulnerability mapping methods by field investigations and numerical modelling. Hydrogeol. J. 2008, 16, 641–658. [Google Scholar] [CrossRef]
- Farjad, B.; Shafri, H.Z.M.; Mohamed, T.A.; Pirasteh, S.; Wijesekara, N. Groundwater intrinsic. vulnerability and risk mapping. Water Manag. 2012, 165, 441–450. [Google Scholar] [CrossRef]
- Al-Mallah, I.A.R.; Sabeh, W.; Al-Qurnawi, W.S. Intrinsic vulnerability assessment for the Quaternary aquifer in Baghdad area using DRASTIC model. Appl. Water Sci. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Kong, M.; Zhong, H.; Wu, Y.; Liu, G.; Xu, Y.; Wang, G. Developing and validating intrinsic groundwater vulnerability maps in regions with limited data: A case study from Datong City in China using DRASTIC and Nemerow pollution indices. Environ. Earth Sci. 2019, 78, 1–14. [Google Scholar] [CrossRef]
- Jang, C.S.; Lin, C.W.; Liang, C.P.; Chen, J.S. Developing a reliable model for aquifer vulnerability. Stoch. Environ. Res. Risk Assess. 2016, 30, 175–187. [Google Scholar] [CrossRef]
- Liang, C.P.; Jang, C.S.; Liang, C.W.; Chen, J.S. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 1167. [Google Scholar] [CrossRef] [Green Version]
- Lasagna, M.; De Luca, D.A.; Franchino, E. Intrinsic groundwater vulnerability assessment: Issues, comparison of different methodologies and correlation with nitrate concentrations in NW Italy. Environ. Earth Sci. 2018, 77, 1–16. [Google Scholar] [CrossRef]
- Civita, M.; De Maio, M. Mapping groundwater vulnerability by the point count system model SINTACS. In Managing Hydrogeological Disasters in a Vulnerable Environment; Andah, K., Ed.; Cosponsorized by IHPUNESCO; Pubbl. GNDCI 1900: Perugia, Italy, 1998; pp. 243–273. [Google Scholar]
- Civita, M.; De Maio, M.; Vigna, B. A GIS methodology for evaluation active aquifer recharge. Proceedings of the 3rd nationalist convention on the protection and management of groundwater in the third millennium. Pap. Appl. Geol. 1999, 291–303. [Google Scholar]
- Civita, M. The Combined Approach When Assessing and Mapping Groundwater Vulnerability to Contamination. J. Water Resour. Prot. 2010, 2, 14–28. [Google Scholar] [CrossRef] [Green Version]
- ISTAT. Censimento Delle Acque Per Uso Civile. 2017. Available online: http://www.istat.it (accessed on 20 October 2018).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Nistor, M.M. Groundwater vulnerability in Europe under climate change. Quat. Int. 2019, 1–12. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1308. [Google Scholar]
- Daly, C. Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol. 2006, 26, 707–721. [Google Scholar] [CrossRef]
- Mbogga, M.S.; Hamann, A.; Wang, T. Historical and projected climate data for natural resource management in western Canada. Agric. Forest Meteorol. 2009, 149, 881–890. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Čenčur Curk, B.; Cheval, S.; Vrhovnik, P.; Verbovšek, T.; Herrnegger, M.; Nachtnebel, H.P.; Marjanović, P.; Siegel, H.; Gerhardt, E.; Hochbichler, E.; et al. CC-WARE Mitigating Vulnerability of Water Resources under Climate Change. WP3—Vulnerability of Water Resources in SEE, Report Version 5. 2014. Available online: http://www.ccware.eu/output-documentation/output-wp3.html (accessed on 5 May 2019).
- Cheval, S.; Dumitrescu, A.; Barsan, M.V. Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Xu, C.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Grimmond, C.S.B.; Oke, T.R. Evapotranspiration rates in urban areas, impacts of urban growth on surface water and groundwater quality. In Proceedings of the IUGG 99 Symposium HS5, Birmingham, England, 18–30 July 1999; IAHS Publications no 259. IAHS Publications: Wallingford, UK, 1999; pp. 235–243. [Google Scholar]
- Nistor, M.M.; Porumb-Ghiurco, G.C. How to compute the land cover evapotranspiration at regional scale? A spatial approach of Emilia-Romagna region. GEOREVIEW Sci. Ann. Ştefan Cel Mare Univ. Suceava Geogr. Ser. 2015, 25, 38–54. [Google Scholar]
- Nistor, M.M.; Mîndrescu, M. Climate change effect on groundwater resources in Emilia-Romagna region: An improved assessment through NISTOR-CEGW method. Quat. Int. 2019, 504, 214–228. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974; p. 508. [Google Scholar]
- Civita, M. Idrogeologia Applicata ed Ambientale; CEA: Milano, Italy, 2005; p. 794. (In Italian) [Google Scholar]
- BGR & UNESCO. International Hydrogeological Map of Europe (IHME1500) 1:1,500,000. International Association of Hydrogeologists. 2013. Available online: http://www.bgr.bund.de/ihme1500/ (accessed on 2 March 2020).
- Copernicus Land Monitoring Services. Corine Land Cover. 2012. Available online: http://land.copernicus.eu/pan-european/corine-land-cover (accessed on 18 July 2016).
- Schulp, C.J.E.; Tieskens, K.F.; Sturck, J.; Fuchs, R.; van der Zanden, E.H.; Schrammeijer, E.; Verburg, P.H. EU scale Analysis of Future cultural Landscape Dynamics; Report No. 1; WP 5 Fine- and Broad- Scale Modelling of Future Landscapes; HERCULES Publisher: Brussels, Belgium, 2015. [Google Scholar]
- Lotze-Campen, H.; Müller, C.; Bondeau, A.; Rost, S.; Popp, A.; Lucht, W. Global food demand, productivity growth, and the scarcity of land and water resources: A spatially explicit mathematical programming approach. Agric. Econ. 2013. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Nitrate and Nitrite in Drinking-Water; Background Document for Development of WHO GUIDELINES for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Nistor, M.M.; Dezsi, S.; Cheval, S. Vulnerability of groundwater under climate change and land cover: A new spatial assessment method applied on Beliş district (Western Carpathians, Romania). Environ. Eng. Manag. J. 2015, 14, 2959–2971. [Google Scholar]
- McCoy, J.; Johnston, K. Using ArcGIS™ Spatial Analyst; GIS by ESRI: Redland, CA, USA, 2002. [Google Scholar]
- Stempvoort, D.V.; Ewert, L.; Wassenaar, L. Aquifers vulnerability index: A GIS—Compatible method for groundwater vulnerability mapping. Can. Water Resour. J./Rev. Can. Ressour. Hydr. 1993, 18, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Daly, D.; Dassargues, A.; Drew, D.; Dunne, S.; Goldscheider, N.; Neale, S.; Popescu, I.C.; Zwahlen, F. Main concepts of the “European approach” to karstgroundwater-vulnerability assessment and mapping. Hydrogeol. J. 2002, 10, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Dixon, B. Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Appl. Geogr. 2005, 25, 327–347. [Google Scholar] [CrossRef]
- Haidu, I.; Nistor, M.M. Groundwater vulnerability assessment in the Grand Est region, France. Quat. Int. 2019. [Google Scholar] [CrossRef]
Aquifers Type | Vulnerability Factor |
---|---|
Highly productive fissured aquifers (including karstified rocks) | 0.8 |
Low and moderately productive fissured aquifers (including karstified rocks) | 0.4 |
Highly productive porous aquifers | 0.7 |
Low and moderately productive porous aquifers | 0.3 |
Locally aquiferous rocks, porous or fissured | 0.1 |
Practically non-aquiferous rocks, porous or fissured | 0.05 |
Snow field/ice field | 0 |
Corine Land Cover | |||
---|---|---|---|
CLC Code 2012 | CLC Description | Pollution Load Index | Normalized Vulnerability Coefficient |
111 | Continuous urban fabric | 6 | 0.40 |
112 | Discontinuous urban fabric | 5.5 | 0.36 |
121 | Industrial or commercial units | 5 | 0.33 |
122 | Road and rail networks and associated land | 7.5 | 0.50 |
123 | Port areas | 7 | 0.46 |
124 | Airports | 7 | 0.46 |
131 | Mineral extraction sites | 9 | 0.60 |
132 | Dump sites | 14 | 0.93 |
133 | Construction sites | 7 | 0.46 |
141 | Green urban areas | 3.5 | 0.23 |
142 | Sport and leisure facilities | 4 | 0.26 |
211 | Non-irrigated arable land | 12 | 0.80 |
212 | Permanently irrigated land | 15 | 1.00 |
213 | Rice fields | 13.5 | 0.90 |
221 | Vineyards | 6 | 0.40 |
222 | Fruit trees and berry plantations | 5 | 0.33 |
223 | Olive groves | 4.5 | 0.30 |
231 | Pastures | 3.5 | 0.23 |
241 | Annual crops associated with permanent crops | 9 | 0.60 |
242 | Complex cultivation patterns | 8.3 | 0.55 |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 5.5 | 0.36 |
244 | Agro-forestry areas | 3 | 0.19 |
311 | Broad-leaved forest | 3.6 | 0.23 |
312 | Coniferous forest | 2.5 | 0.16 |
313 | Mixed forest | 2.8 | 0.18 |
321 | Natural grasslands | 2.5 | 0.16 |
322 | Moors and heathland | 2.7 | 0.17 |
323 | Sclerophyllous vegetation | 2.5 | 0.16 |
324 | Transitional woodland-shrub | 2.6 | 0.17 |
331 | Beaches, dunes, sands | 2.5 | 0.16 |
332 | Bare rocks | 1.5 | 0.09 |
333 | Sparsely vegetated areas | 2 | 0.13 |
334 | Burnt area | 5 | 0.33 |
335 | Glaciers and perpetual snow | 0.1 | 0.007 |
411 | Inland marshes | 2.3 | 0.15 |
412 | Peat bogs | 2.3 | 0.15 |
421 | Salt marshes | 2.3 | 0.15 |
422 | Salines | 2.3 | 0.15 |
423 | Intertidal flats | 3 | 0.19 |
511 | Water courses | 3 | 0.19 |
512 | Water bodies | 3 | 0.19 |
521 | Coastal lagoons | 3 | 0.19 |
522 | Estuaries | 3 | 0.19 |
523 | Sea and ocean | 3 | 0.19 |
Corine Land Cover | Kc | |||
---|---|---|---|---|
CLC Code 2012 | CLC Projection Code | CLC Description | Pollution Load Index | Normalized Vulnerability Coefficient |
133 | 0 | Built-up area | 7 | 0.46 |
211 | 1 | Arable land (non-irrigated) | 12 | 0.80 |
231 | 2 | Pasture | 3.5 | 0.23 |
324 | 3 | Natural and semi-natural vegetation (including Natural grasslands, scrublands, regenerating forest below 2 m, and small forest patches within agricultural landscapes) | 2.6 | 0.17 |
411 | 4 | Inland wetlands | 2.3 | 0.15 |
335 | 5 | Glaciers and snow | 0.1 | 0.00 |
212 | 6 | Irrigated arable land | 15 | 1.00 |
321 | 7 | Recently abandoned arable land (i.e., “long fallow”; includes very extensive farmland not reported in agricultural statistics, herbaceous vegetation, grasses and shrubs below 30 cm) | 2.5 | 0.16 |
241 | 8 | Permanent crops | 9 | 0.60 |
313 | 10 | Forest | 2.8 | 0.18 |
333 | 11 | Sparsely vegetated areas | 2 | 0.13 |
331 | 12 | Beaches, dunes and sands | 2.5 | 0.16 |
422 | 13 | Salines | 2.3 | 0.15 |
521 | 14 | Water and coastal flats | 3 | 0.19 |
322 | 15 | Heathland and moorlands | 2.7 | 0.17 |
324 | 16 | Recently abandoned pasture land (includes very extensive pasture land not reported in agricultural statistics, grasses and shrubs below 30 cm) | 2.6 | 0.17 |
Corine Land Cover | Kc Annual | |||||
---|---|---|---|---|---|---|
CLC code 2012 | CLC Description | Kc | Ks | Ku | Kw | Kclc |
111 | Continuous urban fabric | - | - | 0.3 | - | 0.29 |
112 | Discontinuous urban fabric | - | - | 0.2 | - | 0.21 |
121 | Industrial or commercial units | - | - | 0.3 | - | 0.3 |
122 | Road and rail networks and associated land | - | - | 0.3 | - | 0.25 |
123 | Port areas | - | - | 0.4 | - | 0.39 |
124 | Airports | - | - | 0.3 | - | 0.3 |
131 | Mineral extraction sites | - | - | 0.3 | - | 0.26 |
132 | Dump sites | - | - | 0.3 | - | 0.26 |
133 | Construction sites | - | - | 0.3 | - | 0.26 |
141 | Green urban areas | - | - | 0.2 | - | 0.21 |
142 | Sport and leisure facilities | - | - | 0.2 | - | 0.21 |
211 | Non-irrigated arable land | 1.14 | - | - | - | 1.14 |
212 | Permanently irrigated land | 1.25 | - | - | - | 1.25 |
213 | Rice fields | 0.94 | - | - | - | 0.94 |
221 | Vineyards | 0.5 | - | - | - | 0.5 |
222 | Fruit trees and berry plantations | 0.68 | - | - | - | 0.68 |
223 | Olive groves | 0.66 | - | - | - | 0.66 |
231 | Pastures | 0.7 | - | - | - | 0.7 |
241 | Annual crops associated with permanent crops | 0.67 | - | - | - | 0.67 |
242 | Complex cultivation patterns | 1.16 | - | - | - | 1.16 |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 0.92 | - | - | - | 0.92 |
244 | Agro-forestry areas | 0.92 | - | - | - | 0.92 |
311 | Broad-leaved forest | 1.42 | - | - | - | 1.42 |
312 | Coniferous forest | 1 | - | - | - | 1 |
313 | Mixed forest | 1.33 | - | - | - | 1.33 |
321 | Natural grasslands | 0.97 | - | - | - | 0.97 |
322 | Moors and heathland | 0.92 | - | - | - | 0.92 |
323 | Sclerophyllous vegetation | 0.62 | - | - | - | 0.62 |
324 | Transitional woodland-shrub | 0.83 | - | - | - | 0.83 |
331 | Beaches, dunes, sands | - | 0.23 | - | - | 0.23 |
332 | Bare rocks | - | 0.15 | - | - | 0.15 |
333 | Sparsely vegetated areas | 0.48 | - | - | - | 0.48 |
334 | Burnt area | - | 0.1 | - | - | 0.1 |
335 | Glaciers and perpetual snow | - | - | - | 0.51 | 0.51 |
411 | Inland marshes | - | - | - | 0.45 | 0.45 |
412 | Peat bogs | - | - | - | 0.37 | 0.37 |
421 | Salt marshes | - | - | - | 0.32 | 0.32 |
422 | Salines | - | 0.1 | - | - | 0.1 |
423 | Intertidal flats | - | - | - | 0.64 | 0.64 |
511 | Water courses | - | - | - | 0.63 | 0.63 |
512 | Water bodies | - | - | - | 0.64 | 0.64 |
521 | Coastal lagoons | - | - | - | 0.68 | 0.68 |
522 | Estuaries | - | - | - | 0.62 | 0.62 |
523 | Sea and ocean | - | - | - | 0.74 | 0.74 |
Corine Land Cover | Kc | ||||||
---|---|---|---|---|---|---|---|
CLC code 2012 | CLC projection code | CLC Description | Kc | Ks | Ku | Kw | Kclc |
133 | 0 | Built-up area | - | - | 0.26 | - | 0.26 |
211 | 1 | Arable land (non-irrigated) | 1.14 | - | - | - | 1.14 |
231 | 2 | Pasture | 0.7 | - | - | - | 0.7 |
321 and 324 | 3 | Natural and semi-natural vegetation (including natural grasslands, scrublands, regenerating forest below 2 m, and small forest patches within agricultural landscapes) | 0.9 | - | - | - | 0.9 |
411 | 4 | Inland wetlands | - | - | - | 0.45 | 0.45 |
335 | 5 | Glaciers and snow | - | - | - | 0.51 | 0.51 |
212 | 6 | Irrigated arable land | 1.25 | - | - | - | 1.25 |
321 | 7 | Recently abandoned arable land (i.e. “long fallow”; includes very extensive farmland not reported in agricultural statistics, herbaceous vegetation, grasses, and shrubs below 30 cm) | 0.97 | - | - | - | 0.97 |
241 | 8 | Permanent crops | 0.67 | - | - | - | 0.67 |
313 | 10 | Forest | 1.33 | - | - | - | 1.33 |
333 | 11 | Sparsely vegetated areas | 0.48 | - | - | - | 0.48 |
331 | 12 | Beaches, dunes and sands | - | 0.23 | - | - | 0.23 |
422 | 13 | Salines | - | 0.1 | - | - | 0.1 |
423 and 521 | 14 | Water and coastal flats | - | - | - | 0.66 | 0.66 |
322 | 15 | Heathland and moorlands | 0.92 | - | - | - | 0.92 |
231 and 324 | 16 | Recently abandoned pasture land (includes very extensive pasture land not reported in agricultural statistics, grasses, and shrubs below 30 cm) | 0.76 | - | - | - | 0.76 |
Class Difference | No. of Pixels | Percentage Statistics (%) |
---|---|---|
0, 1 | 20 | 87 |
2 | 2 | 9 |
3 | 1 | 4 |
4 | 0 | 0 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nistor, M.-M. Groundwater Vulnerability in the Piedmont Region under Climate Change. Atmosphere 2020, 11, 779. https://doi.org/10.3390/atmos11080779
Nistor M-M. Groundwater Vulnerability in the Piedmont Region under Climate Change. Atmosphere. 2020; 11(8):779. https://doi.org/10.3390/atmos11080779
Chicago/Turabian StyleNistor, Mărgărit-Mircea. 2020. "Groundwater Vulnerability in the Piedmont Region under Climate Change" Atmosphere 11, no. 8: 779. https://doi.org/10.3390/atmos11080779
APA StyleNistor, M. -M. (2020). Groundwater Vulnerability in the Piedmont Region under Climate Change. Atmosphere, 11(8), 779. https://doi.org/10.3390/atmos11080779