Next Article in Journal
Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (NPI) and Baker River Basin
Next Article in Special Issue
Comparison of Respiratory and Ischemic Heart Mortalities and their Relationship to the Thermal Environment
Previous Article in Journal
Statistical Analysis of Microphysical and Dynamical Parameters for Clouds and Precipitation over Nauq Tibetan Plateau in Summertime Using Ka-band Cloud Radar
Previous Article in Special Issue
Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry
Open AccessArticle

Changes Detected in Five Bioclimatic Indices in Large Romanian Cities over the Period 1961–2016

1
Doctoral School of Geography, Faculty of Geography, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania
2
Department of Physical and Technical Geography, Faculty of Geography, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania
3
Department of Regional Geography and Territorial Planning, Faculty of Geography, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
Atmosphere 2020, 11(8), 819; https://doi.org/10.3390/atmos11080819
Received: 15 June 2020 / Revised: 22 July 2020 / Accepted: 30 July 2020 / Published: 3 August 2020
(This article belongs to the Special Issue Challenges in Applied Human Biometeorology)
Bioclimatic indices are very important tools to evaluate the thermal stress of the human body. The aims of this study were to analyze the general bioclimatic conditions in ten big cities in Romania and to find out if there has been any change in five bioclimatic indices over a 56-year period: 1961–2016. The indices considered were: equivalent temperature, effective temperature, cooling power, universal thermal climate index and temperature-humidity index. They were calculated based on the daily meteorological data of air temperature, relative humidity, and wind speed recorded in 10 weather stations in Romania: Bucharest-Băneasa, Botoșani, Cluj-Napoca, Constanța, Craiova, Galați, Iași, Oradea, Sibiu and Timișoara. The features investigated for trend detection consisted of the frequency and length of the occurrence period for each class and for each index. The test used for trend detection was Mann-Kendall and the magnitude of the trend (the slope) was calculated by employing Sen’s slope method. The main results are based on frequency analysis. Three indices showed comfort class as dominant whereas the other two indicated cold stress conditions as dominant in the area. There was a shift from the cold stress conditions to the warm and hot ones for all the indices. The most stressful conditions for hot extremes did not indicate significant change. The climate in the big cities of Romania became milder during the cold season and hotter during the warm period of the year. The analysis of the length of each thermal class indicated mainly longer occurrence periods during the year for comfortable or warm stress classes. View Full-Text
Keywords: thermal stress; bioclimatic indices; trend detection; Mann-Kendall; Romania thermal stress; bioclimatic indices; trend detection; Mann-Kendall; Romania
Show Figures

Figure 1

MDPI and ACS Style

Banc, Ș.; Croitoru, A.-E.; David, N.A.; Scripcă, A.-S. Changes Detected in Five Bioclimatic Indices in Large Romanian Cities over the Period 1961–2016. Atmosphere 2020, 11, 819. https://doi.org/10.3390/atmos11080819

AMA Style

Banc Ș, Croitoru A-E, David NA, Scripcă A-S. Changes Detected in Five Bioclimatic Indices in Large Romanian Cities over the Period 1961–2016. Atmosphere. 2020; 11(8):819. https://doi.org/10.3390/atmos11080819

Chicago/Turabian Style

Banc, Ștefana; Croitoru, Adina-Eliza; David, Nicoleta A.; Scripcă, Andreea-Sabina. 2020. "Changes Detected in Five Bioclimatic Indices in Large Romanian Cities over the Period 1961–2016" Atmosphere 11, no. 8: 819. https://doi.org/10.3390/atmos11080819

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop