Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Experimental Designs
3.2. Climate Data and Quality Control Checks
3.3. Lapse Rate Calculation
3.4. Estimated Solar Radiation
3.5. Circulation Weather Types Classification
3.6. Cluster Analysis
4. Results
4.1. Air Temperature
4.2. Hourly Air Temperature Lapse Rates (LRh)
4.3. Monthly Maximum (LRmax), Minimum (LRmin) and Average (LRavg) Air Temperature Lapse Rates
4.4. Cluster Analysis
4.4.1. Cluster Classification
4.4.2. Monthly Distribution of Clusters
4.4.3. Clusters, Circulation Weather Types and Weather Conditions
5. Discussion
6. Conclusions
- Nighttime lapse rates were weaker than diurnal ones due to air cold subsidence processes and topography. Daily maximum air temperature lapse rates (LRmax) were steeper from March to July, although on the shady slope this only occurred around July. LRmax was weaker in winter. Daily minimum air temperature lapse rates (LRmin) were weaker from June to August (and December), and steeper from March to May.
- Different insolation values within and between the analyzed slopes were found, due to the facing slope and elevation of the locations, which directly influence diurnal air temperatures because of the topographic shadows in the valley bottom. This causes the retention of cold night air during the short days.
- Steep and weak lapse rate patterns were found, explained by various factors (slope insolation, daytime, topography, season and weather conditions). On clear winter days, the lower insolation of lower locations weakened LRmax. However, at this time, LRmax was steep under unstable atmospheric conditions. During the summer, LRmax was almost always steep (with few topographic shadows and mainly clear). LRmin was weak under stable atmospheric conditions, and steep under unstable ones, regardless of the month and season.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonnardot, V.; Carey, V.; Madelin, M.; Cautenet, S.; Coetzee, Z.; Quénol, H. Spatial variability of Night temperatures at a fine scale over the Stellenbosch Wine District, South Africa. J. Int. Sci. Vigne Vin 2012, 46, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Fang, J. Temperature variation along the northern and southern slopes of Mt. Taibai, China. Agric. For. Meteorol. 2006, 139, 200–207. [Google Scholar] [CrossRef]
- Gilaberte-Búrdalo, M.; López-Martín, F.; Pino-Otín, M.R.; López-Moreno, J.I. Impacts of climate change on ski industry. Environ. Sci. Policy 2014, 44, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Pons, M.; Johnson, P.; Rosas-Casals, M.; Sureda, B.; Jover, È. Modeling climate change effects on winter ski tourism in Andorra. Clim. Res. 2012, 54, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Harlan, S.; Chowell, G.; Yang, S.; Petitti, D.; Morales Butler, E.; Ruddell, B.; Ruddell, D. Heat-Related Deaths in Hot Cities: Estimates of Human Tolerance to High Temperature Thresholds. Int. J. Environ. Res. Public Health 2014, 11, 3304–3326. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Petersen, L.; Ragettli, S.; Pellicciotti, F. The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res. 2014, 50, 2212–2226. [Google Scholar] [CrossRef] [Green Version]
- Pagès, M.; Miró, J.R. Determining temperature lapse rates over mountain slopes using vertically weighted regression: A case study from the Pyrenees. Meteorol. Appl. 2010, 17, 53–63. [Google Scholar] [CrossRef]
- García, M.B.; Domingo, D.; Pizarro, M.; Font, X.; Gómez, D.; Ehrlén, J. Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environ. Exp. Bot. 2019, 170, 1–10. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Navarro-Serrano, F.; Azorín-Molina, C.; Sánchez-Navarrete, P.; Alonso-González, E.; Rico, I.; Morán-Tejeda, E.; Buisán, S.; Revuelto, J.; Pons, M.; et al. Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort. Theor. Appl. Climatol. 2019, 135, 1361–1373. [Google Scholar] [CrossRef]
- Ackerman, E.A. The Koppen Classification of Climates in North America. Geogr. Rev. 1941, 31, 105. [Google Scholar] [CrossRef]
- Villmow, J.R. Regional patterns of Climates in Europe according to the Thornthwaite Classification. Ohio J. Sci. 1962, 62, 39–53. [Google Scholar]
- Capel Molina, J.J. El Clima de la Península Ibérica; Ariel: Barcelona, Spain, 2000; p. 197. [Google Scholar]
- Whiteman, C.D.; Bian, X.; Zhong, S.; Whiteman, C.D.; Bian, X.; Zhong, S. Wintertime Evolution of the Temperature Inversion in the Colorado Plateau Basin. J. Appl. Meteorol. 1999, 38, 1103–1117. [Google Scholar] [CrossRef]
- Barry, R. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-521-68158-2. [Google Scholar]
- Karki, R.; ul Hasson, S.; Schickhoff, U.; Scholten, T.; Böhner, J.; Gerlitz, L. Near surface air temperature lapse rates over complex terrain: A WRF based analysis of controlling factors and processes for the central Himalayas. Clim. Dyn. 2020, 54, 329–349. [Google Scholar] [CrossRef]
- Mahrt, L. Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn. 1998, 11, 263–279. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. D Atmos. 2003, 108, 4688. [Google Scholar] [CrossRef] [Green Version]
- Khorchani, M.; Martin-Hernandez, N.; Vicente-Serrano, S.M.; Azorin-Molina, C.; Garcia, M.; Domínguez-Duran, M.A.; Reig, F.; Peña-Gallardo, M.; Domínguez-Castro, F. Average annual and seasonal Land Surface Temperature, Spanish Peninsular. J. Maps 2018, 14, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Serrano, F.; López-Moreno, J.I.; Domínguez-Castro, F.; Alonso-González, E.; Azorin-Molina, C.; El-Kenawy, A.; Vicente-Serrano, S.M. Maximum and minimum air temperature lapse rates in the Andean region of Ecuador and Peru. Int. J. Clim. 2020. [Google Scholar] [CrossRef]
- Geiger, R. The Climate near the Ground; Rowman & Littlefield Publishers: Lanham, MD, USA, 1965; ISBN 0742518574. [Google Scholar]
- Whiteman, C.D. Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteorol. Clim. 1982, 21, 270–289. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D.; McKee, T.B. Breakup of temperature inversions in deep mountain valleys: Part II. Thermodynamic model. J. Appl. Meteorol. Clim. 1982, 21, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, C.D.; Zhong, S.; Shaw, W.J.; Hubbe, J.M.; Bian, X.; Mittelstadt, J. Cold Pools in the Columbia Basin. Weather 2001, 16, 432–447. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, J.; Lott, F. Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-covered areas. Water Resour. Res. 2008, 44, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hubbart, J.; Kavanagh, K.; Pangle, R.; Link, T.; Schotzko, A. Cold air drainage and modeled nocturnal leaf water potential in complex forested terrain. Tree Physiol. 2007, 27, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minder, J.R.; Mote, P.W.; Lundquist, J.D. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res. Atmos. 2010, 115, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N.; Maeda, E.E.; Williams, R. Use of remotely sensed land surface temperature as a proxy for air temperatures at high elevations: Findings from a 5000 m elevational transect across Kilimanjaro. J. Geophys. Res. Atmos. 2016, 121, 9998–10015. [Google Scholar] [CrossRef] [Green Version]
- Kattel, D.B.; Yao, T.; Yang, W.; Gao, Y.; Tian, L. Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. Int. J. Clim. 2015, 35, 4431–4443. [Google Scholar] [CrossRef]
- Hanna, E.; Mernild, S.; Yde, J.; Villiers, S. Surface Air Temperature Fluctuations and Lapse Rates on Olivares Gamma Glacier, Rio Olivares Basin, Central Chile, from a Novel Meteorological Sensor Network. Adv. Meteorol. 2017, 2017, 6581537. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.; Hock, R. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica). Glob. Planet. Chang. 2004, 42, 45–58. [Google Scholar] [CrossRef]
- Pagès, M.; Pepin, N.; Miró, J. Measurement and modelling of temperature cold pools in the Cerdanya valley (Pyrenees), Spain. Meteorol. Appl. 2017, 24, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Miró, J.R.; Peña, J.C.; Pepin, N.; Sairouni, A.; Aran, M. Key features of cold-air pool episodes in the northeast of the Iberian Peninsula (Cerdanya, eastern Pyrenees). Int. J. Clim. 2017, 38, 1105–1115. [Google Scholar] [CrossRef]
- Benavides, R.; Montes, F.; Rubio, A.; Osoro, K. Geostatistical modelling of air temperature in a mountainous region of Northern Spain. Agric. For. Meteorol. 2007, 146, 173–188. [Google Scholar] [CrossRef]
- Navarro-Serrano, F.; López-Moreno, J.I.; Azorin-Molina, C.; Buisán, S.; Domínguez-Castro, F.; Sanmiguel-Vallelado, A.; Alonso-González, E.; Khorchani, M. Air temperature measurements using autonomous self-recording dataloggers in mountainous and snow covered areas. Atmos. Res. 2019, 224, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Kulshrestha, S.; Ramsankaran, R. Investigating the performance of snowmelt runoff model using temporally varying near-surface lapse rate in Western Himalayas. Curr. Sci. 2018, 114, 808–813. [Google Scholar] [CrossRef]
- Heynen, M.; Miles, E.; Ragettli, S.; Buri, P.; Immerzeel, W.W.; Pellicciotti, F. Air temperature variability in a high-elevation Himalayan catchment. Ann. Glaciol. 2016, 57, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Nigrelli, G.; Fratianni, S.; Zampollo, A.; Turconi, L.; Chiarle, M. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps. Theor. Appl. Climatol. 2017, 131, 1479–1491. [Google Scholar] [CrossRef]
- Marshall, S.J.; Sharp, M.J.; Burgess, D.O.; Anslow, F.S. Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: Implications for regional downscaling of temperature. Int. J. Clim. 2007, 27, 385–398. [Google Scholar] [CrossRef]
- Navarro-Serrano, F.; López-Moreno, J.; Azorin-Molina, C.; Alonso-González, E.; Tomás-Burguera, M.; Sanmiguel-Vallelado, A.; Revuelto, J.; Vicente-Serrano, S.M. Estimation of near-surface air temperature lapse rates over continental Spain and its mountain areas. Int. J. Clim. 2018, 38, 3233–3249. [Google Scholar] [CrossRef] [Green Version]
- Ojha, R. Identification of homogeneous regions of near surface air temperature lapse rates across India. Int. J. Clim. 2019, 39, 4288–4304. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Rafiq, M.; Rashid, I. Spatio-temporal variation of land surface temperature and temperature lapse rate over mountainous Kashmir Himalaya. J. Mt. Sci. 2018, 15, 563–576. [Google Scholar] [CrossRef]
- Gardner, A.S.; Sharp, M.J.; Koerner, R.M.; Labine, C.; Boon, S.; Marshall, S.J.; Burgess, D.O.; Lewis, D. Near-Surface Temperature Lapse Rates over Arctic Glaciers and Their Implications for Temperature Downscaling. J. Clim. 2009, 22, 4281–4298. [Google Scholar] [CrossRef]
- Lookingbill, T.R.; Urban, D.L. Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agric. For. Meteorol. 2003, 114, 141–151. [Google Scholar] [CrossRef]
- Mahrt, L.; Vickers, D.; Nakamura, R.; Soler, M.R.; Sun, J.; Burns, S.; Lenschow, D.H. Shallow Drainage Flows. Bound. Layer Meteorol. 2001, 101, 243–260. [Google Scholar] [CrossRef]
- Soler, M.R.; Infante, C.; Buenestado, P.; Mahrt, L. Observations of Nocturnal Drainage Flow in a Shallow Gully. Bound. Layer Meteorol. 2002, 105, 253–273. [Google Scholar] [CrossRef]
- Barry, R.; Chorley, R. Atmosphere, Weather and Climate, 1st ed.; Taylor & Francis: Abingdon, UK, 1987; p. 536. [Google Scholar]
- Von Arx, G.; Dobbertin, M.; Rebetez, M. Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric. For. Meteorol. 2012, 166–167, 144–155. [Google Scholar] [CrossRef]
- Lareau, N.P.; Horel, J.D. Dynamically Induced Displacements of a Persistent Cold-Air Pool. Bound. Layer Meteorol. 2014, 154, 291–316. [Google Scholar] [CrossRef] [Green Version]
- Moron, V.; Oueslati, B.; Pohl, B.; Janicot, S. Daily Weather Types in February–June (1979–2016) and Temperature Variations in Tropical North Africa. J. Appl. Meteorol. Clim. 2018, 57, 1171–1195. [Google Scholar] [CrossRef]
- Kirchner, M.; Faus-Kessler, T.; Jakobi, G.; Leuchner, M.; Ries, L.; Scheel, H.-E.; Suppan, P. Altitudinal temperature lapse rates in an Alpine valley: Trends and the influence of season and weather patterns. Int. J. Clim. 2013, 33, 539–555. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, T.; Laguna, M.; Vicente-Serrano, S.M. Do tourism-based ski resorts contribute to the homogeneous development of the Mediterranean mountains? A case study in the Central Spanish Pyrenees. Tour. Manag. 2007, 28, 1326–1339. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; Herrera, S.; López-Moreno, J.I.; Revuelto, J.; Lehmann, A.; Beniston, M. Evolution and frequency (1970–2007) of combined temperature–precipitation modes in the Spanish mountains and sensitivity of snow cover. Reg. Environ. Chang. 2013, 13, 873–885. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, J.I.; García-Ruiz, J.M. Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrol. Sci. J. 2004, 49, 787–801. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Gascoin, S.; Herrero, J.; Sproles, E.A.; Pons, M.; Alonso-González, E.; Hanich, L.; Boudhar, A.; Musselman, K.N.; Molotch, N.P.; et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 2017, 12, 074006. [Google Scholar] [CrossRef]
- Esteban, P.; Ninyerola, M.; Prohom, M. Spatial modelling of air temperature and precipitation for Andorra (Pyrenees) from daily circulation patterns. Theor. Appl. Climatol. 2009, 96, 43–56. [Google Scholar] [CrossRef]
- Buisán, S.; Saz, M.A.; López-Moreno, J.I.; López-Moreno, J.I. Spatial and temporal variability of winter snow and precipitation days in the western and central Spanish Pyrenees. Int. J. Clim. 2015, 35, 259–274. [Google Scholar] [CrossRef]
- Alonso-González, E.; López-Moreno, J.I.; Navarro-Serrano, F.; Sanmiguel-Vallelado, A.; Revuelto, J.; Domínguez-Castro, F.; Ceballos, A. Snow climatology for the mountains in the Iberian Peninsula using satellite imagery and simulations with dynamically downscaled reanalysis data. Int. J. Clim. 2020, 40, 477–491. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Diez, Y. Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Clim. 1998, 18, 1557–1574. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología (AEMET); Ministerio de Medio Ambiente y Medio Rural y Marino; Instituto de Meteorología de Portugal. Atlas Climático Ibérico, 1st ed.; Closas-Orcoyen, S.L.: Madrid, Spain, 2011.
- Crespo, D.; Albiac, J.; Kahil, T.; Esteban, E.; Baccour, S. Tradeoffs between Water Uses and Environmental Flows: A Hydroeconomic Analysis in the Ebro Basin. Water Resour. Manag. 2019, 33, 2301–2317. [Google Scholar] [CrossRef] [Green Version]
- García-Garizábal, I.; Causapé, J.; Merchán, D. Evaluation of alternatives for flood irrigation and water usage in Spain under Mediterranean climate. Catena 2017, 155, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Buisán, S.; López-Moreno, J.; Saz, M.; Kochendorfer, J. Impact of weather type variability on winter precipitation, temperature and annual snowpack in the Spanish Pyrenees. Clim. Res. 2016, 69, 79–92. [Google Scholar] [CrossRef]
- Navarro-Serrano, F.; López-Moreno, J.I. Spatio-temporal analysis of snowfall events in the Spanish Pyrenees and ther relationship to atmospheric circulation. Cuad. Investig. Geográfica 2017, 43, 233–254. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Pueyo, Y.; Beguería, S. Modelling the rate of secondary succession after farmland abandonment in a Mediterranean mountain area. Landsc. Urban Plan. 2007, 83, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Buisán, S.; Azorin-Molina, C.; Jimenez, Y. Impact of two different sized Stevenson screens on air temperature measurements. Int. J. Clim. 2015, 35, 4408–4416. [Google Scholar] [CrossRef]
- Imholt, C.; Soulsby, C.; Malcolm, I.; Hrachowitz, M.; Gibbins, C.; Langan, S.; Tetzlaff, D. Influence of Scale on Thermal characteristics in a large montane River Basin. River Res. Appl. 2013, 29, 403–419. [Google Scholar] [CrossRef]
- Yang, Z.; Hanna, E.; Callaghan, T.; Jonasson, C. How can meteorological observations and microclimate simulations improve understanding of 1913–2010 climate change around Abisko, Swedish Lapland? Meteorol. Appl. 2012, 19, 454–463. [Google Scholar] [CrossRef]
- Pepin, N.; Kidd, D. Spatial temperature variation in the Eastern Pyrenees. Weather 2006, 61, 300–310. [Google Scholar] [CrossRef]
- Serrano, E.; Sanjosé-Blasco, J.J.; Gómez-Lende, M.; López-Moreno, J.I.; Pisabarro, A.; Martínez-Fernández, A. Periglacial environments and frozen ground in the central Pyrenean high mountain area: Ground thermal regime and distribution of landforms and processes. Permafr. Periglac. Process. 2019, 30, 292–309. [Google Scholar] [CrossRef]
- Rolland, C. Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. J. Clim. 2003, 16, 1032–1046. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Liu, J.; Zhang, X.; Li, Y.; Tang, Y. Changes of spatial patterns of surface-air-temperature on the Tibetan Plateau. Latest Trends Theor. Appl. Mech. Fluid Mech. Heat Mass Transf. 2010, 47, 42–47. [Google Scholar]
- Blandford, T.R.; Humes, K.S.; Harshburger, B.J.; Moore, B.C.; Walden, V.P.; Ye, H. Seasonal and Synoptic Variations in Near-Surface Air Temperature Lapse Rates in a Mountainous Basin. J. Appl. Meteorol. Clim. 2008, 47, 249–261. [Google Scholar] [CrossRef]
- Florinsky, I.V.; Kulagina, T.B.; Meshalkina, J.L. Influence of topography on landscape radiation temperature distribution. Int. J. Remote Sens. 1994, 15, 3147–3153. [Google Scholar] [CrossRef]
- IGN Plan Nacional de Ortofotografía Aérea. Available online: https://pnoa.ign.es/presentacion-y-objetivo (accessed on 27 January 2020).
- Corripio, J.G. Insol: Solar Radiation. R Package Version 1.2.1. Available online: https://CRAN.R-project.org/package=insol. (accessed on 20 May 2020).
- R Core-Team. R: A Language and Environment for Statistical Computing 2013; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Jenkinson, A.F.; Collison, P. An initial climatology of Wales over the North Sea. In Synoptic Climatology Branch Memorandum; Meteorological Office: Bracknell, UK, 1997; p. 62. [Google Scholar]
- Lamb, H.H. British Isles weather types and a register of daily sequence of circulation patterns, 1861–1971. Geophys. Mem. 1972, 116, 85. [Google Scholar]
- Rasilla Álvarez, D.F.; García-Codrón, J.C.; Garmendia Pedraja, C. Los temporales de viento: Propuesta metodológica para el análisis de un fenómeno infravalorado. In Proceedings of the 7th Reunión Nacional de Climatología, Albarracin, Spain, 27–29 June 2002; pp. 129–136. [Google Scholar]
- Basnett, T.A.; Parker, D.E. Development of the global mean sea level pressure data set GMSLP2. In Climatic Research Technical Note; Hadley Centre, Meteorological Office: Bracknell, UK, 1997; Volume 79. [Google Scholar]
- Charrad, M.; Ghazaali, N.; Boiteau, V.; Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- Ninyerola, M.; Pons, X.; Roure, J.M. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int. J. Clim. 2000, 20, 1823–1841. [Google Scholar] [CrossRef]
- Espín-Sánchez, E.; Ruiz-Álvarez, V.; Martí-Talavera, J.; García-Marín, R. Estudio preliminar de las inversiones térmicas en el sureste de la Península Ibérica: El caso de los campos de Hernán Perea. Pirin. Rev. Ecol. Montaña. 2018, 173, 1–18. [Google Scholar]
- Daly, C.; Gibson, W.; Taylor, G.; Johnson, G.; Pasteris, P. A knowledge-based approach to the statistical mapping of climate. Clim. Res. 2002, 22, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Sadoti, G.; McAfee, S.A.; Roland, C.A.; Fleur Nicklen, E.; Sousanes, P.J. Modelling high-latitude summer temperature patterns using physiographic variables. Int. J. Clim. 2018, 38, 4033–4042. [Google Scholar] [CrossRef]
- Lundquist, J.D.; Pepin, N.; Rochford, C. Automated algorithm for mapping regions of cold-air pooling in complex terrain. J. Geophys. Res. 2008, 113, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N. Lapse rate changes in northern England. Theor. Appl. Climatol. 2001, 68, 1–16. [Google Scholar] [CrossRef]
- Price, J.D.; Vosper, S.; Brown, A.; Ross, A.; Clark, P.; Davies, F.; Horlacher, V.; Claxton, B.; McGregor, J.R.; Hoare, J.S.; et al. Colpex: Field and numerical studies over a region of small hills. Bull. Am. Meteorol. Soc. 2011, 92, 1636–1650. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Zhang, M.; Wang, S.; Zhu, X.; Che, Y. Near-surface air temperature lapse rates in Xinjiang, northwestern China. Theor. Appl. Climatol. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Sanmiguel-Vallelado, A.; López-Moreno, J.I.; Morán-Tejeda, E.; Alonso-González, E.; Navarro-Serrano, F.; Rico, I.; Camarero, J.J. Variable effects of forest canopies on snow processes in a valley of the central Spanish Pyrenees. Hydrol. Process. 2020, 34, 2247–2262. [Google Scholar] [CrossRef]
- Barringer, J.R.F. A variable lapse rate snowline model for the Remarkables, Central Otago, New Zealand. J. Hydrol. 1989, 28, 32–46. [Google Scholar]
- Duane, W.J.; Pepin, N.C.; Losleben, M.L.; Hardy, D.R. General characteristics of Temperature and Humidity Variability on Kilimanjaro, Tanzania. Arct. Antarct. Alp. Res. 2008, 40, 323–334. [Google Scholar] [CrossRef]
- Dumas, M.D. Changes in temperature and temperature gradients in the French Northern Alps during the last century. Theor. Appl. Climatol. 2013, 111, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Dodson, R.; Marks, D. Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim. Res. 1997, 8, 1–20. [Google Scholar] [CrossRef]
- Joshi, R.; Sambhav, K. Near surface temperature lapse rate for treeline environment in western Himalaya and possible impacts on ecotone vegetation. Trop. Ecol. 2018, 59, 197–209. [Google Scholar] [CrossRef]
- Lareau, N.P.; Crosman, E.; Whiteman, C.D.; Horel, J.D.; Hoch, S.W.; Brown, W.O.J.; Horst, T.W. The Persistent Cold-Air Pool Study. Bull. Am. Meteorol. Soc. 2013, 94, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Bolstad, P.V.; Swift, L.; Collins, F.; Régnière, J. Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains. Agric. For. Meteorol. 1998, 91, 161–176. [Google Scholar] [CrossRef]
Slope | Name | Installation | Elev. m a.s.l. | Land Use | Facing Slope | Lat (°) | Lon (°) |
---|---|---|---|---|---|---|---|
Estiviellas (Sunny) | Est-5 | TGP4017 and Datamate | 1948 | Open Forest | S | 42.758 | −0.529 |
Est-4 | TGP4017 and Datamate | 1789 | Dense Forest | S | 42.756 | −0.529 | |
Est-3 | TGP4017 and Datamate | 1602 | Open Forest | SE | 42.755 | −0.526 | |
Est-2 | TGP4017 and Datamate | 1269 | Dense Forest | SE | 42.756 | −0.520 | |
Est-1 | Th. PT100 and Stevenson Sc. | 1170 | Village | SE | 42.749 | −0.516 | |
Moleta (Shady) | Mol-5 | TGP4017 and Datamate | 2255 | Open Forest | W | 42.738 | −0.494 |
Mol-4 | TGP4017 and Datamate | 2026 | Open Forest | NW | 42.736 | −0.502 | |
Mol-3 | TGP4017 and Datamate | 1808 | Dense Forest | W | 42.738 | −0.504 | |
Mol-2 | TGP4017 and Datamate | 1464 | Dense Forest | N | 42.740 | −0.510 | |
Mol-1 | TGP4017 and Datamate | 1234 | Dense Forest | N | 42.743 | −0.515 |
Estiviellas | Moleta | |||||||
---|---|---|---|---|---|---|---|---|
Tmax | Loc. | Cluster 1 | Cluster 2 | Loc. | Cluster 1 | Cluster 2 | ||
5th | 0 | 0 | 5th | 0 | 0 | |||
4th | −0.92 | +0.94 | 4th | +1.62 | +3.04 | |||
3rd | +1.41 | +3.15 | 3rd | −0.73 | +3.11 | |||
2nd | −0.38 | +3.62 | 2nd | +0.60 | +5.02 | |||
1st | −0.09 | +5.96 | 1st | +3.93 | +7.89 | |||
Tavg | Loc. | Cluster 1 | Cluster 2 | Loc. | Cluster 1 | Cluster 2 | Cluster 3 | |
5th | 0 | 0 | 5th | 0 | 0 | 0 | ||
4th | −0.10 | +0.94 | 4th | −0.25 | +1.24 | +1.64 | ||
3rd | +1.37 | +2.58 | 3rd | −1.61 | +0.91 | +2.32 | ||
2nd | +1.08 | +3.53 | 2nd | +0.14 | +2.87 | +4.74 | ||
1st | −0.96 | +4.00 | 1st | +0.87 | +3.78 | +6.01 | ||
Tmin | Loc. | Cluster 1 | Cluster 2 | Loc. | Cluster 1 | Cluster 2 | ||
5th | 0 | 0 | 5th | 0 | 0 | |||
4th | −0.14 | +1.16 | 4th | +1.38 | +0.82 | |||
3rd | +0.97 | +2.69 | 3rd | +2.14 | +1.92 | |||
2nd | +1.25 | +4.15 | 2nd | +0.30 | +4.67 | |||
1st | −1.57 | +4.31 | 1st | +0.18 | +5.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Serrano, F.; López-Moreno, J.I.; Azorin-Molina, C.; Alonso-González, E.; Aznarez-Balta, M.; Buisán, S.T.; Revuelto, J. Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees. Atmosphere 2020, 11, 656. https://doi.org/10.3390/atmos11060656
Navarro-Serrano F, López-Moreno JI, Azorin-Molina C, Alonso-González E, Aznarez-Balta M, Buisán ST, Revuelto J. Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees. Atmosphere. 2020; 11(6):656. https://doi.org/10.3390/atmos11060656
Chicago/Turabian StyleNavarro-Serrano, Francisco, Juan Ignacio López-Moreno, Cesar Azorin-Molina, Esteban Alonso-González, Marina Aznarez-Balta, Samuel T. Buisán, and Jesús Revuelto. 2020. "Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees" Atmosphere 11, no. 6: 656. https://doi.org/10.3390/atmos11060656
APA StyleNavarro-Serrano, F., López-Moreno, J. I., Azorin-Molina, C., Alonso-González, E., Aznarez-Balta, M., Buisán, S. T., & Revuelto, J. (2020). Elevation Effects on Air Temperature in a Topographically Complex Mountain Valley in the Spanish Pyrenees. Atmosphere, 11(6), 656. https://doi.org/10.3390/atmos11060656