Effect of Model Resolution on Intense and Extreme Precipitationinthe Mediterranean Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Climate Model and Simulations
2.2. Precipitation Indices
- TOT_PREC: annual total precipitation.
- SDII: Simple daily precipitation intensity index, that is the average precipitation during wet days (defined as days with RR ≥ 1 mm, RR daily precipitation rate)
- RRwn95: 95th percentile of precipitation considering only wet days. It is used as the threshold for N95 (see below) and calculated for the historical time slice period (1961–1990).
- RRwn99 is defined as RRwn95 except it refers to the 99th percentile.
- R95pTOT is the annual total precipitation amount when daily precipitation is greater than RRwn95.
- Wet_days is the annual number of wet days.
- N95 is the annual amount of wet days, that is number of days when RR ≥ RRwn95, using the 95th percentile computed during the reference period.
2.3. Areas, Boxes and Variables
- Northern Mediterranean (a rectangular area delimited from the corners 7° W–37° E and 38–46° N),
- Southern Mediterranean (delimited form the corners 7° W–37° E and 30–38° N.
- Alpine region (AL), a rectangular longitude–latitude domain from 5 to 14° E and from 44.5 to 48.5° N, consisting only of land points. The domain extends over approximately 700 km from eastern France to mid Austria and over about 450 km from northern Italy to southern Germany.
- North-West Mediterranean coast (NW), consisting of the land points inside the rectangular longitude–latitude domain from 2 to 11.5° E and from 42 to 45° N.
- Southern Italy (SI) consisting of the land points inside the rectangular longitude–latitude domain from 11.5 to 19° E and from 36.5 to 42° N.
- Central Mediterranean Sea (CM), consisting of the sea points inside the same rectangular grid used for Southern Italy.
- Greece and Anatolia (GA), consisting of the land points inside a rectangular longitude-latitude domain from 20 to 40° E and from 36 to 42° N.
- Levantine Basin (LB), consisting of the sea points inside the rectangular longitude -latitude domain from 23 to 37° E and from 30 to 37° N.
Wet Day Probability and Its Dependence on Intensity
3. Results: Role of Resolution on Precipitation Patterns and Indices
3.1. Total Precipitation (TOT_PREC)
3.2. Wet Days Frequency (Wet_Days) and Daily Precipitationintensity (SDII)
3.3. Daily Precipitation Extremes and Intense Events R95pTOT
4. Results: Role of Resolution on the Probability of Daily Precipitation in Wet Days
4.1. Wet Day Probability
4.2. Probability of Daily Precipitation as Function of Intensity
5. Summary and Discussion
6. Conclusions
- Over most of the Mediterranean, total precipitation will decrease in association with the decrease of the wet day frequency;
- Only in some areas at the northern border of the Mediterranean, total precipitation will increase in association with the increase of intensity of daily precipitation;
- The average intensity of precipitation events, the fraction of precipitation during intense events and frequency of intense events will increase over the northern Mediterranean. The same indices will decrease over sparse areas in the south Mediterranean;
- During wet days, the probability of weak precipitation will decrease, whereas the probability of medium, strong and extreme precipitation will increase. In other terms, the frequency of rainy days will decrease, but they will be characterized with events more intense than in the present climate.
- The present and future probability of wet days in southern Italy, which is significantly higher in HRRCM than in LRRCM and will decrease significantly more in the future in the former than in the latter;
- Considering only wet days, the future changes of probability is in most areas significantly smaller in HRRCM (with the exception of strong and intense precipitation in Greece and Levantine Basin where increasing resolution has the opposite effect).
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giorgi, F. Climate change Hot-Spots. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet.Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Planton, S.; Lionello, P.; Artale, V.; Aznar, R.; Carrillo, A.; Colin, J.; Congedi, L.; Dubois, C.; Elizalde, A.; Gualdi, S.; et al. The Climate of the Mediterranean Region in Future Climate Projections. In The Climate of the Mediterranean Region-From the Past to the Future; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 449–502. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, U.; Lionello, P.; Belušic’, D.; Jacobeit, J.; Knippertz, P.; Kuglitsch, F.G.; Leckebusch, G.C.; Luterbacher, J.; Maugeri, M.; Maheras, P.; et al. Climate of the Mediterranean: Synoptic Patterns, Temperature, Precipitation, Winds, and Their Extremes. In The Climate of the Mediterranean Region-From the Past to the Future; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 301–346. ISBN 9780124160422. [Google Scholar] [CrossRef]
- Gualdi, S.; Somot, S.; Li, L.; Artale, V.; Adani, M.; Bellucci, A.; Braun, A.; Calmanti, S.; Carillo, A.; Dell’Aquila, A.; et al. The CIRCE simulations: A new set of regional climate change projections performed with a realistic representation of the Mediterranean Sea. Bull. Am. Meteorol. Soc. 2013, 94, 65–81. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Fowler, H.J.; Ekström, M.; Blenkinsop, S.; Smith, A.P. Estimating change in extreme European precipitation using a multimodel ensemble. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy precipitation events over the Euro-Mediterranean region in a warmer climate: Results from CMIP5 models. Reg. Environ. Chang. 2016, 16, 595–602. [Google Scholar] [CrossRef]
- Tramblay, Y.; Somot, S. Future evolution of extreme precipitation in the Mediterranean. Clim. Chang. 2018, 151, 289–302. [Google Scholar] [CrossRef]
- Drobinski, P.; Da Silva, N.; Panthou, G.; Bastin, S.; Müller, C.; Ahrens, B.; Borga, M.; Conte, D.; Fosser, G.; Giorgi, F.; et al. Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios. Clim. Dyn. 2018, 51, 1237–1257. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Scarascia, L. The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg. Environ. Chang. 2020, 20, 31. [Google Scholar] [CrossRef]
- Lionello, P.; Martucci, G.; Zampieri, M. Implementation of a Coupled Atmosphere-Wave-Ocean Model in the Mediterranean Sea: Sensitivity of the Short Time Scale Evolution to the Air-Sea Coupling Mechanisms. J. Atmos. Ocean Sci. 2003, 9, 65–95. [Google Scholar] [CrossRef]
- Ruti, P.; Somot, S.; Giorgi, F.; Dubois, C.; Flaounas, E.; Obermann, A.; Dell’Aquila, A.; Pisacane, G.; Harzallah, A.; Lombardi, E.; et al. Med-CORDEX initiative for Mediterranean climate studies. Bull. Am. Meteorol. Soc. 2016, 97, 1187–1208. [Google Scholar] [CrossRef] [Green Version]
- Somot, S.; Sevault, F.; Déqué, M.; Crépon, M. 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob. Planet. Chang. 2008, 63, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Bucchignani, E.; Mercogliano, P.; Panitz, H.J.; Montesarchio, M. Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Chang. Res. 2018, 66–80. [Google Scholar] [CrossRef]
- Torma, C.; Giorgi, F.; Coppola, E. Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J. Geophys. Res. Atmos. 2015, 120, 3957–3972. [Google Scholar] [CrossRef]
- Bucchignani, E.; Montesarchio, M.; Zollo, A.L.; Mercogliano, P. High-resolution climate simulations with COSMO-CLM over Italy: Performance evaluation and climate projections for the 21st century. Int. J. Climatol. 2016, 36, 735–756. [Google Scholar] [CrossRef]
- Pieri, A.B.; Von Hardenberg, J.; Parodi, A.; Provenzale, A. Sensitivity of Precipitation Statistics to Resolution, Microphysics, and Convective Parameterization: A Case Study with the High-Resolution WRF Climate Model over Europe. J. Hydrometeorol. 2015, 16, 1857–1872. [Google Scholar] [CrossRef]
- Pontoppidan, M.; Reuder, J.; Mayer, S.; Kolstad, E.W. Downscaling an intense precipitation event in complex terrain: The importance of high grid resolution. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1271561. [Google Scholar] [CrossRef] [Green Version]
- Cavicchia, L.; Scoccimarro, E.; Gualdi, S.; Marson, P.; Ahrens, B.; Berthou, S.; Conte, D.; Dell’Aquila, A.; Drobinski, P.; Djurdjevic, V.; et al. Mediterranean extremeprecipitation: A multi-model assessment. Clim. Dyn. 2018, 51, 901–913. [Google Scholar] [CrossRef]
- Kendon, E.J.; Ban, N.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Evans, J.P.; Fosser, G.; Wilkinson, J.M. Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change? Bull. Am. Meteorol. Soc. 2017, 98, 79–93. [Google Scholar] [CrossRef]
- Cavicchia, L.; Gualdi, S.; Sanna, A.; Oddo, P. The Regional Ocean Atmosphere Coupled Model COSMONEMO_MFS. In CMCC, Bologna, Italy. Issue RP0254/ Research Papers; CMCC: April 2015. Available online: https://www.cmcc.it/wp-content/uploads/2015/04/rp0254-csp-04-2015.pdf (accessed on 5 May 2020).
- Sanna, A.; Lionello, P.; Gualdi, S. Coupled atmosphere ocean climate model simulations in the Mediterranean region: Effect of a high-resolution marine model on cyclones and precipitation. Nat. Hazards Earth Syst. Sci. 2013, 13, 1567–1577. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Edmonds, J.; Hibbard, K.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Sanna, A.; Fogli, P.G.; Manzini, E.; Vichi, M.; Oddo, P.; Navarra, A. Effects of Tropical Cyclones on Ocean Heat Transport in a High Resolution Coupled General Circulation Model. J. Clim. 2011, 24, 4368–4384. [Google Scholar] [CrossRef] [Green Version]
- Lange, S.; Rockel, B.; Volkholz, J.; Bookhagen, B. Regional climate model sensitivities to parametrizations of convection and non-precipitating subgrid-scale clouds over South America. Clim. Dyn. 2015, 44, 2839–2857. [Google Scholar] [CrossRef] [Green Version]
- Madec, G. Nemo Ocean Engine. ISSN No 1288-1619, NEMO Community Ocean Model. 2016. Available online: https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf (accessed on 5 May 2020).
- Oddo, P.; Adani, M.; Pinardi, N.; Fratianni, C.; Tonani, M.; Pettenuzzo, D. A nested Atlantic–Mediterranean sea general circulation model for operational forecasting. Ocean Sci. 2009, 5, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Valcke, S. The oasis3 coupler: A european climate modelling community software. Geosci. Model Dev. 2013, 6, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Larson, J.; Jacob, R.; Ong, E. The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models. Int. J. High Perform. Comput. Appl. 2005, 19, 277–292. [Google Scholar] [CrossRef]
- Bauer, D.F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 1972, 67, 687–690. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- CCl/WCRP/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI). Available online: https://www.wcrp-climate.org/etccdi (accessed on 5 May 2020).
- Bürger, G.; Sobie, R.; Cannon, A.; Werner, A.; Murdock, T. Downscaling Extremes: An Intercomparison of Multiple Methods for Future Climate. J. Clim. 2013, 26, 3429–3449. [Google Scholar] [CrossRef]
Annual Temperatures Change in One Century | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenario | RCP4.5 | RCP8.5 | ||||||||||
Area | North Med | South Med | North Med | South Med | ||||||||
Simulation | HRRCM | LRRCM | GCM | HRRCM | LRRCM | GCM | HRRCM | LRRCM | GCM | HRRCM | LRRCM | GCM |
Annual mean 2 m T change (°C/century) | 2.8 | 2.8 | 3.0 | 2.6 | 2.6 | 2.8 | 4.7 | 4.6 | 5.0 | 4.5 | 4.5 | 4.8 |
Annual mean SST change (°C/century) | 2.2 | 2.1 | 2.4 | 2.0 | 1.9 | 2.2 | 3.5 | 3.5 | 3.9 | 3.4 | 3.2 | 3.7 |
Differences among Simulations Fraction of Points—Reference Period (1961–1990) | ||||||
---|---|---|---|---|---|---|
HRRCM versus LRRCM | HRRCM versus GCM | |||||
Parameter | Positive (%) | Negative(%) | No signif. (%) | Positive (%) | Negative(%) | No signif. (%) |
TOT_PREC | 8 | 28 | 64 | 37 | 23 | 41 |
SDII | 5 | 51 | 44 | 3 | 81 | 16 |
RRwn95 | 5 | 43 | 52 | 5 | 92 | 3 |
RRwn99 | 5 | 28 | 67 | 9 | 65 | 26 |
R95pTOT | 3 | 5 | 91 | 16 | 4 | 80 |
Wet_days | 13 | 7 | 80 | 77 | 1 | 22 |
N95 | 1 | 0 | 99 | 41 | 0 | 59 |
Annual Precipitation Change | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenario | RCP4.5 | RCP8.5 | ||||||||||
Area | North Med | South Med | North Med | South Med | ||||||||
Simulation | HRRCM | LRRCM | GCM | HRRCM | LRRCM | GCM | HRRCM | LRRCM | GCM | HRRCM | LRRCM | GCM |
Total annual precipitation rate of change (mm/century) | −57 | −60 | −38 | −54 | −64 | −47 | −104 | −107 | −75 | −103 | −114 | −83 |
Annual precipitation change in 2021–2050 vs. 1960–1990(%) | −7 | −8 | −7 | −10 | −12 | −12 | −7 | −8 | −6 | −17 | −18 | −18 |
Annual precipitation change in 2071–2100 vs. 1960–1990(%) | −9 | −9 | −7 | −20 | −21 | −22 | −18 | −18 | −14 | −39 | −41 | −39 |
Statistically Significant Percentage of Climate Change Signal (2021–2050 vs. 1961–1990): Amount of Positive and Negative Grid Cells. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
HRRCM | LRRCM | GCM | ||||||||
Parameter | Scenario | Positive | Negative | No signif. | Positive | Negative | No signif. | Positive | Negative | No signif. |
TOT_PREC | rcp 4.5 | 8 | 10 | 82 | 11 | 14 | 75 | 9 | 10 | 81 |
rcp 8.5 | 10 | 21 | 69 | 13 | 24 | 63 | 11 | 17 | 73 | |
SDII | rcp 4.5 | 21 | 1 | 78 | 19 | 1 | 80 | 24 | 0 | 75 |
rcp 8.5 | 32 | 2 | 66 | 27 | 2 | 71 | 31 | 1 | 68 | |
R95pTOT | rcp 4.5 | 20 | 1 | 79 | 20 | 1 | 79 | 22 | 1 | 77 |
rcp 8.5 | 24 | 2 | 74 | 23 | 2 | 75 | 27 | 1 | 72 | |
Wet_days | rcp 4.5 | 4 | 29 | 66 | 7 | 37 | 56 | 4 | 34 | 61 |
rcp 8.5 | 5 | 42 | 53 | 6 | 47 | 47 | 4 | 36 | 60 | |
N95 | rcp 4.5 | 17 | 1 | 82 | 17 | 1 | 82 | 19 | 1 | 80 |
rcp 8.5 | 22 | 3 | 76 | 21 | 3 | 77 | 24 | 2 | 74 |
Statistically Significant Percentage of Climate Change Signal (2071–2100 vs. 1961–1990): Amount of Positive and Negative Grid Cells. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
HRRCM | LRRCM | GCM | ||||||||
Parameter | Scenario | Positive | Negative | No signif. | Positive | Negative | No signif. | Positive | Negative | No signif. |
TOT_PREC | rcp 4.5 | 7 | 35 | 58 | 6 | 36 | 57 | 7 | 25 | 68 |
rcp 8.5 | 9 | 59 | 32 | 7 | 58 | 35 | 9 | 54 | 37 | |
SDII | rcp 4.5 | 41 | 2 | 57 | 42 | 3 | 55 | 48 | 4 | 49 |
rcp 8.5 | 47 | 7 | 46 | 49 | 7 | 44 | 55 | 9 | 36 | |
R95pTOT | rcp 4.5 | 30 | 3 | 67 | 29 | 3 | 67 | 36 | 4 | 61 |
rcp 8.5 | 36 | 10 | 54 | 37 | 12 | 51 | 41 | 5 | 53 | |
Wet_days | rcp 4.5 | 2 | 69 | 29 | 1 | 68 | 31 | 1 | 65 | 34 |
rcp 8.5 | 0 | 93 | 7 | 0 | 92 | 8 | 0 | 95 | 5 | |
N95 | rcp 4.5 | 27 | 4 | 70 | 26 | 4 | 70 | 32 | 4 | 64 |
rcp 8.5 | 33 | 13 | 54 | 32 | 14 | 53 | 37 | 7 | 56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, D.; Gualdi, S.; Lionello, P. Effect of Model Resolution on Intense and Extreme Precipitationinthe Mediterranean Region. Atmosphere 2020, 11, 699. https://doi.org/10.3390/atmos11070699
Conte D, Gualdi S, Lionello P. Effect of Model Resolution on Intense and Extreme Precipitationinthe Mediterranean Region. Atmosphere. 2020; 11(7):699. https://doi.org/10.3390/atmos11070699
Chicago/Turabian StyleConte, Dario, Silvio Gualdi, and Piero Lionello. 2020. "Effect of Model Resolution on Intense and Extreme Precipitationinthe Mediterranean Region" Atmosphere 11, no. 7: 699. https://doi.org/10.3390/atmos11070699
APA StyleConte, D., Gualdi, S., & Lionello, P. (2020). Effect of Model Resolution on Intense and Extreme Precipitationinthe Mediterranean Region. Atmosphere, 11(7), 699. https://doi.org/10.3390/atmos11070699