A Data-Driven Approach for Winter Precipitation Classification Using Weather Radar and NWP Data
Abstract
:1. Introduction
2. Data
2.1. ASOS Data
2.2. Radar Data
2.3. NWP Data
3. Methodology
3.1. Classification Models
3.2. Model Training and Evaluation
4. Results
4.1. Relationships between Classes and Features
4.2. Model Training and MCS
4.3. Model Evaluation
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ryzhkov, A.V.; Schuur, T.J.; Burgess, D.W.; Heinselman, P.L.; Giangrande, S.E.; Zrnic, D.S. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Am. Meteorol. Soc. 2005, 86, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Nelson, B.; Seo, D.-J. Characteristics of reprocessed hydrometeorological automated data system (HADS) hourly precipitation data. Weather Forecast. 2009, 24, 1287–1296. [Google Scholar] [CrossRef]
- Straka, J.M.; Zrnić, D.S.; Ryzhkov, A.V. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteorol. Clim. 2000, 39, 1341–1372. [Google Scholar] [CrossRef]
- Rasmussen, R.; Baker, B.; Kochendorfer, J.; Meyers, T.; Landolt, S.; Fischer, A.P.; Black, J.; Thériault, J.M.; Kucera, P.; Gochis, D.; et al. How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 2012, 93, 811–829. [Google Scholar] [CrossRef] [Green Version]
- Black, A.W.; Mote, T.L. Characteristics of Winter-Precipitation-Related Transportation Fatalities in the United States. Weather Clim. Soc. 2015, 7, 133–145. [Google Scholar] [CrossRef]
- Park, H.; Ryzhkov, A.V.; Zrnić, D.S.; Kim, K.E. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef]
- Krajewski, W.F.; Ceynar, D.; Demir, I.; Goska, R.; Kruger, A.; Langel, C.; Mantilla, R.; Niemeier, J.; Quintero, F.; Seo, B.-C.; et al. Real-time flood forecasting and information system for the State of Iowa. Bull. Am. Meteorol. Soc. 2017, 98, 539–554. [Google Scholar] [CrossRef]
- Seo, B.-C.; Krajewski, W.F. Statewide real-time quantitative precipitation estimation using weather radar and NWP model analysis: Algorithm description and product evaluation. Environ. Modell. Softw. 2020, (in press). [Google Scholar]
- Keeter, K.K.; Cline, J.W. The objective use of observed and forecast thickness values to predict precipitation type in North Carolina. Weather Forecast. 1991, 6, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Heppner, P.O.G. Snow versus rain: Looking beyond the “magic” numbers. Weather Forecast. 1992, 7, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.O.; Grim, J.A.; Steiner, M. Assessment of the high-resolution rapid refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Weather Forecast. 2015, 30, 892–913. [Google Scholar] [CrossRef]
- Schuur, T.J.; Park, H.S.; Ryzhkov, A.V.; Reeves, H.D. Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol. 2012, 51, 763–779. [Google Scholar] [CrossRef]
- Thompson, E.; Rutledge, S.; Dolan, B.; Chandrasekar, V. A dual polarimetric radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Ocean. Technol. 2014, 31, 1457–1481. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Rasmussen, R.M.; Manning, K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Weather Rev. 2004, 132, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Luchs, S.; Ryzhkov, A.; Xue, M.; Ryzhkova, L.; Cao, Q. Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. J. Appl. Meteorol. Climatol. 2011, 50, 1558–1570. [Google Scholar] [CrossRef] [Green Version]
- Clark, P. Automated surface observations, new challenges-new tools. In Proceedings of the 6th Conference on Aviation Weather Systems, Dallas, TX, USA, 15–20 January 1995; pp. 445–450. [Google Scholar]
- National Oceanic and Atmospheric Administration; Department of Defense; Federal Aviation Administration; United States Navy. Automated Surface Observing System (ASOS) User’s Guide, ASOS Program. 1998. Available online: https://www.weather.gov/media/asos/aum-toc.pdf (accessed on 30 May 2020).
- Kelleher, K.E.; Droegemeier, K.K.; Levit, J.J.; Sinclair, C.; Jahn, D.E.; Hill, S.D.; Mueller, L.; Qualley, G.; Crum, T.D.; Smith, S.D.; et al. A real-time delivery system for NEXRAD Level II data via the internet. Bull. Am. Meteorol. Soc. 2007, 88, 1045–1057. [Google Scholar] [CrossRef]
- Ansari, S.; Greco, S.D.; Kearns, E.; Brown, O.; Wilkins, S.; Ramamurthy, M.; Weber, J.; May, R.; Sundwall, J.; Layton, J.; et al. Unlocking the potential of NEXRAD data through NOAA’s big data partnership. Bull. Am. Meteorol. Soc. 2017, 99, 189–204. [Google Scholar] [CrossRef]
- Seo, B.-C.; Keem, M.; Hammond, R.; Demir, I.; Krajewski, W.F. A pilot infrastructure for searching rainfall metadata and generating rainfall product using the big data of NEXRAD. Environ. Modell. Softw. 2019, 117, 69–75. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Peng, C.Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar]
- Raileanu, L.E.; Stoffel, K. Theoretical comparison between the gini index and information gain criteria. Ann. Math. Artif. Intell. 2004, 41, 77–93. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial neural network: The multilayer perceptron: A review of applications in atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S.; et al. Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
- Seo, B.-C.; Dolan, B.; Krajewski, W.F.; Rutledge, S.; Petersen, W. Comparison of single and dual polarization based rainfall estimates using NEXRAD data for the NASA iowa flood studies project. J. Hydrometeor. 2015, 16, 1658–1675. [Google Scholar] [CrossRef]
- Seo, B.-C.; Krajewski, W.F. Correcting temporal sampling error in radar-rainfall: Effect of advection parameters and rain storm characteristics on the correction accuracy. J. Hydrol. 2015, 531, 272–283. [Google Scholar] [CrossRef]
Radar | The Number of ASOS Stations | ASOS Stations |
---|---|---|
KFSD | 2 | EST (161.1), SPW (131.9) |
KDMX | 7 | ALO (142.2), AMW (30.2), DSM (22.5), LWD (122.9), MCW (161.8), MIW (78.9), OTM (126.9) |
KDVN | 5 | BRL (102.7), CID (98.3), DBQ (87.9), DVN (0.6), IOW (78.0) |
KOAX | 1 | SUX (119.0) |
Class (C) | C1 | RA (rain), FR (freezing rain), and SN (snow) |
C2 | RA, FR, LS (light snow), MS (moderate snow), and HS (heavy snow) | |
Feature (F) | F1 | Thick1000–850 and Ts |
F2 | Thick1000–850, Ts, and RHs | |
F3 | Thick1000–850, Thick850–700, Ts, and T850 | |
F4 | Thick1000–850, Thick850–700, Ts, T850, and RHs | |
F5 | Thick1000–850, Thick850–700, Ts, T850, RHs, ZH, ZDR, and ρHV |
Classes | RA | FR | LS | MS | HS | Total |
---|---|---|---|---|---|---|
Training | 408 | 68 | 956 | 107 | 14 | 1553 |
Validation | 134 | 51 | 803 | 63 | 15 | 1066 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, B.-C. A Data-Driven Approach for Winter Precipitation Classification Using Weather Radar and NWP Data. Atmosphere 2020, 11, 701. https://doi.org/10.3390/atmos11070701
Seo B-C. A Data-Driven Approach for Winter Precipitation Classification Using Weather Radar and NWP Data. Atmosphere. 2020; 11(7):701. https://doi.org/10.3390/atmos11070701
Chicago/Turabian StyleSeo, Bong-Chul. 2020. "A Data-Driven Approach for Winter Precipitation Classification Using Weather Radar and NWP Data" Atmosphere 11, no. 7: 701. https://doi.org/10.3390/atmos11070701
APA StyleSeo, B. -C. (2020). A Data-Driven Approach for Winter Precipitation Classification Using Weather Radar and NWP Data. Atmosphere, 11(7), 701. https://doi.org/10.3390/atmos11070701