Urban CO2 Budget: Spatial and Seasonal Variability of CO2 Emissions in Krakow, Poland
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. CO2 Flux Measurements
2.3. Urban CO2 Budget Estimation
2.4. Statistical Analyses and Uncertainty Estimations
3. Results and Discussion
3.1. Soil Emissions of CO2
3.2. Riverine Emissions of CO2
3.3. Net CO2 Flux from an Urban Area
3.4. Urban CO2 Budget on a Local Scale
3.5. CO2 Budget for Krakow Agglomeration
= 0.37 + 1.10 + 4.97 + 1.378 + 0.011 + 0.23 − 0.79 = 7.27 Mt CO2 yr−1.
3.6. Uncertainty Estimation for Components of the CO2 Budget
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 44003. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. World Energy Outlook 2008; Organisation for Economic Co-operation and Development: Paris, France, 2008; ISBN 9789264019065. [Google Scholar]
- Kuc, T.; Zimnoch, M. Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon 1998, 40, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Pataki, D.E.; Bowling, D.R.; Ehleringer, J.R. Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects. J. Geophys. Res. 2003, 108, 4735. [Google Scholar] [CrossRef]
- Zimnoch, M.; Jeleń, D.; Gałkowski, M.; Kuc, T.; Nęcki, J.; Chmura, Ł.; Gorczyca, Z.; Jasek, A.; Różański, K. Partitioning of atmospheric carbon dioxide over Central Europe: Insights from combined measurements of CO2 mixing ratios and their carbon isotope composition. Isotopes Environ. Health Stud. 2012, 48, 421–433. [Google Scholar] [CrossRef]
- Moriwaki, R.; Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor and carbon dioxide over a suburban area. J. Appl. Meteorol. 2004, 43, 1700–1710. [Google Scholar] [CrossRef]
- Prairie, Y.T.; Duarte, C.M. Direct and indirect metabolic CO2 release by humanity. Biogeosciences 2007, 4, 215–217. [Google Scholar] [CrossRef] [Green Version]
- Helfter, C.; Famulari, D.; Phillips, G.J.; Barlow, J.F.; Wood, C.R.; Grimmond, C.S.B.; Nemitz, E. Controls of carbon dioxide concentrations and fluxes above central London. Atmos. Chem. Phys. 2011, 11, 1913–1928. [Google Scholar] [CrossRef] [Green Version]
- Briber, B.M.; Hutyra, L.R.; Dunn, A.L.; Raciti, S.M.; Munger, J.W. Variations in atmospheric CO2 mixing ratios across a Boston, MA urban to rural gradient. Land 2013, 2, 304–327. [Google Scholar] [CrossRef] [Green Version]
- Schüssler, W.; Neubert, R.; Levin, I.; Fischer, N.; Sonntag, C. Determination of microbial versus root-produced CO2 in an agricultural ecosystem by means of δ13CO2 measurements in soil air. Tellus B 2000, 52, 909–918. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.L.; Liu, S.G.; Zhou, G.Y.; Zhang, D.Q.; Zhou, C.Y. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Chang. Biol. 2006, 12, 546–560. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Zhang, Y.-P.; Schaefer, D.A.; Sha, L.-Q.; Deng, Y.; Deng, X.-B.; Dai, K.-J. The role of stream water carbon dynamics and export in the carbon balance of a tropical seasonal rainforest, Southwest China. PLoS ONE 2013, 8, e56646. [Google Scholar] [CrossRef] [PubMed]
- Nimick, D.A.; Gammons, H.C.; Parker, S.R. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chem. Geol. 2011, 283, 3–17. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeleń, D. Anthropogenic Carbon Dioxide in Krakow City. PhD Thesis, University of Science and Technology, Krakow, Poland, 2012. [Google Scholar]
- Wachniew, P. Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula, Poland. Chem. Geol. 2006, 233, 293–308. [Google Scholar] [CrossRef]
- Jasek, A.; Zimnoch, M.; Gorczyca, Z.; Smula, E.; Różański, K. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland. Isotopes Environ. Health Stud. 2014, 50, 143–155. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Amer. Meteor. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7. [Google Scholar]
- Municipal Spatial Information System, Geodesy Department of the Municipality of Krakow. Available online: https://msip.krakow.pl/ (accessed on 20 February 2016).
- Jasek-Kamińska, A. Variability of Biogenic Carbon Dioxide Emissions and Its Stable Isotopic Composition in an Urban Area of Krakow. PhD Thesis, University of Science and Technology, Krakow, Poland, 2017. [Google Scholar]
- Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N.J.; Martikainen, P.J.; Alm, J.; Wilmking, M. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 2007, 4, 1005–1025. [Google Scholar] [CrossRef]
- Pihlatie, M.K.; Christiansen, J.R.; Aaltonen, H.; Korhonen, J.F.J.; Nordbo, A.; Rasilo, T.; Benanti, G.; Giebels, M.; Helmy, M.; Sheehy, J.; et al. Comparison of static chambers to measure CH4 emissions from soils. Agr. Forest Meteorol. 2013, 171–172, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, G.L.; Livingston, G.P. Vents and seals in non-steady-state chambers for measuring gas exchange between soil and the atmosphere. Eur. J. Soil Sci. 2001, 52, 675–682. [Google Scholar] [CrossRef]
- Foken, T.; Aubinet, M.; Leuning, R. The Eddy Covariance Method. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-007-2350-4. [Google Scholar]
- Grönholm, T.; Aalto, P.; Hiltunen, V.; Rannik, U.; Rinne, J.; Laakso, L.; Hyvönen, S.; Vesala, T. Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus B 2007, 59, 381–386. [Google Scholar] [CrossRef]
- Chojnicki, B.; Siedlecki, P.; Rinne, J.; Urbaniak, M.; Juszczak, R.; Olejnik, J. The methane emission measurements using relaxed eddy technique–preliminary results from Rzecin wetland. Acta Agrophysica 2010, 179, 102–112. [Google Scholar]
- Milne, R.; Mennim, A.; Hargreaves, K. The value of the β coefficient in the relaxed eddy accumulation method in terms of fourth-order moments. Bound.-Lay. Meteorol. 2001, 101, 359–373. [Google Scholar] [CrossRef]
- Amman, C.; Meixner, F.X. Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Fortuniak, K. Radiacyjne i Turbulencyjne Składniki Bilansu Cieplnego Terenów Zurbanizowanych na Przykładzie Łodzi; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2010; ISBN 9788375253696. (In Polish) [Google Scholar]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3. Arbeitsergebnisse 2011, 46, 62. [Google Scholar]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple parametrisation for flux footprint predictions. Boundary-Layer Met. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Crippa, M.; Oreggioni, G.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Lo Vullo, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.G.J.; Vignati, E. Fossil CO2 and GHG Emissions of All World Countries–2019 Report; EUR 29849 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-11100-9. Available online: https://edgar.jrc.ec.europa.eu/overview.php?v=50_GHG (accessed on 21 April 2020).
- Sanchez, M.J.S.; Bhattacharya, S.; Mareckova, K. Volume 1: General Guidance and Reporting. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- City Development Department, Municipality of Krakow, 2013. City Status Report as of 2012. Available online: https://www.bip.krakow.pl/ (accessed on 15 February 2020). (In Polish).
- Järvi, L.; Rannik, Ü.; Kokkonen, T.V.; Kurppa, M.; Karppinen, A.; Kouznetsov, R.D.; Rantala, P.; Vesala, T.; Wood, C.R. Uncertainty of eddy covariance flux measurements over an urban area based on two towers. Atmos. Meas. Tech. 2018, 11, 5421–5438. [Google Scholar] [CrossRef] [Green Version]
- Gately, C.K.; Hutyra, L.R. Large uncertainties in urban-scale carbon emissions. J. Geophys. Res.-Atmos. 2017, 122, 11242–11260. [Google Scholar] [CrossRef]
- Long, H.; Vihermaa, L.; Waldron, S.; Hoey, T.; Quemin, S.; Newton, J. Hydraulics are a first-order control on CO2 efflux from fluvial systems. J. Geophys. Res. Biogeosci. 2015, 120, 1912–1922. [Google Scholar] [CrossRef] [Green Version]
- Vesala, T.; Järvi, L.; Launiainen, S.; Sogachev, A.; Rannik, Ü.; Mammarella, I.; Siivola, E.; Keronen, P.; Rinne, J.; Riikonen, A.; et al. Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 2008, 60, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, W.; Fortuniak, K.; Siedlecki, M. Carbon dioxide flux in the centre of Łódź, Poland–analysis of a 2-year eddy covariance measurement data set. Int. J. Climatol. 2011, 31, 232–243. [Google Scholar] [CrossRef]
- Schmutz, M.; Vogt, R.; Feigenwinter, C.; Parlow, E. Ten years of eddy covariance measurements in Basel, Switzerland: Seasonal and interannual variabilities of urban CO2 mole fraction and flux. J. Geophys. Res.-Atmos. 2016, 121, 8649–8667. [Google Scholar] [CrossRef] [Green Version]
- Hiller, R.; McFadden, J.; Kljun, N. Interpreting CO2 fluxes over a suburban lawn: The influence of traffic emissions. Bound.-Lay. Meteorol. 2011, 138, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Jasek, A.; Zimnoch, M.; Różański, K. Isotopic composition of carbon dioxide in the atmosphere of Krakow. Acta Geogr. Lodz. 2016, 104, 113–122. [Google Scholar]
- Nordbo, A.; Järvi, L.; Haapanala, S.; Wood, C.R.; Vesala, T. Fraction of natural area as main predictor of net CO2 emissions from cities. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Gioli, B.; Toscano, P.; Lugato, E.; Matese, A.; Miglietta, F.; Zaldei, A.; Vaccari, F.P. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environ. Pollut. 2012, 164, 125–131. [Google Scholar] [CrossRef]
- Soegaard, H.; Møller-Jensen, L. Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote Sens. Environ. 2003, 87, 283–294. [Google Scholar] [CrossRef]
- Järvi, L.; Nordbo, A.; Junninen, H.; Riikonen, A.; Moilanen, J.; Nikinmaa, E.; Vesala, T. Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010. Atmos. Chem. Phys. 2012, 12, 8475–8489. [Google Scholar] [CrossRef] [Green Version]
- Kordowski, K.; Kuttler, W. Carbon dioxide fluxes over an urban park area. Atmos. Environ. 2010, 44, 2722–2730. [Google Scholar] [CrossRef]
- Magliulo, V.; Toscano, P.; Grimmond, C.S.B.; Kotthaus, S.; Järvi, L.; Setälä, H.; Lindberg, F.; Vogt, R.; Staszewski, T.; Bubak, A.; et al. Environmental measurements in BRIDGE case studies. In Understanding Urban Metabolism: A Tool for Urban Planning; Chrysoulakis, N., de Castro, E.A., Moors, E.J., Eds.; Routledge: London, UK, 2014. [Google Scholar]
- Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichstein, M.; Papale, D.; Piao, S.L.; Schulze, E.-D.; Wingate, L.; Matteucci, G.; et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 2007, 13, 2509–2537. [Google Scholar] [CrossRef] [Green Version]
- Forest Resources, Regional Dictorate of the State Forests. Available online: https://www.krakow.lasy.gov.pl/zasoby-lesne#.XtVa5MDgokk (accessed on 1 June 2020). (In Polish)
Site | Urban Local Climate Zone 1 | Soil Type 2 | Vegetation Maintenance | pH 3 | Volumetric Porosity 4 | Carbon Content 4 [wt.%] |
---|---|---|---|---|---|---|
S1 | LCZ 2 | Urbisols | Regularly cut during vegetation period | 7.6 | 0.50 | 3.4 |
S2 | LCZ D | Cambic Fluvisols | Cut upon reaching 20–30 cm in height | 7.0 | 0.51 | 3.7 |
S3 | LCZ B | Technosols | Regularly cut during vegetation period | 7.7 | 0.50 | 2.3 |
S4 | LCZ 6 | Hortisols | Regularly cut during vegetation period | 7.9 | 0.37 | 0.5 |
Site | Channel Width [m] | Temperature [°C] | pH | Conductivity [mS cm−1] | Alkalinity [meq/L] | pCO2 1 [ppm] |
---|---|---|---|---|---|---|
R1 | 90 | 1.9–29.1 | 7.5–7.9 | 1.34–5.69 | 1.54–3.46 | 1267–5052 |
R2 | 110 | 1.9–26.4 | 7.5–7.9 | 1.28–4.39 | 1.64–3.85 | 1132–5446 |
R3 | 70 | 3.3–26.0 | 7.5–7.9 | 1.38–4.20 | 1.76–3.81 | 1271–5072 |
Emission Category 1 | CO2 Emission [MtCO2 yr−1] |
---|---|
Energy and industry (1A1a, 1A2, 2A, 2B, 2C1a, 2C1c, 2C1e, 2C1f, 2C2, 2G, 3) | 4.967 |
Transportation (1A3a, 1A3b, 1A3c, 1A3d, 1A3e) | 0.369 |
Commercial/residential buildings and waste (1A4, 1A5, 6C) | 1.102 |
Land Use Category | Land Area 1 [km2] | Fraction of Total City Area 1 | Representative Site | CO2 Emission [MtCO2 yr−1] |
---|---|---|---|---|
Urbanized | 140.40 | 43% | - | - |
Agricultural | 149.96 | 46% | S2 | 1.264 |
Forests and parks | 23.64 | 7% | S1, S3 | 0.114 |
Surface water | 5.44 | 2% | R1, R2, R3 | 0.011 |
Other | 10.01 | 2% | - | - |
Total | 326.85 | 100% | - | 1.389 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasek-Kamińska, A.; Zimnoch, M.; Wachniew, P.; Różański, K. Urban CO2 Budget: Spatial and Seasonal Variability of CO2 Emissions in Krakow, Poland. Atmosphere 2020, 11, 629. https://doi.org/10.3390/atmos11060629
Jasek-Kamińska A, Zimnoch M, Wachniew P, Różański K. Urban CO2 Budget: Spatial and Seasonal Variability of CO2 Emissions in Krakow, Poland. Atmosphere. 2020; 11(6):629. https://doi.org/10.3390/atmos11060629
Chicago/Turabian StyleJasek-Kamińska, Alina, Mirosław Zimnoch, Przemysław Wachniew, and Kazimierz Różański. 2020. "Urban CO2 Budget: Spatial and Seasonal Variability of CO2 Emissions in Krakow, Poland" Atmosphere 11, no. 6: 629. https://doi.org/10.3390/atmos11060629
APA StyleJasek-Kamińska, A., Zimnoch, M., Wachniew, P., & Różański, K. (2020). Urban CO2 Budget: Spatial and Seasonal Variability of CO2 Emissions in Krakow, Poland. Atmosphere, 11(6), 629. https://doi.org/10.3390/atmos11060629