Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characteristics of the Studied Farms
2.2. The Methodology for Assessment GHG Emissions from Biomass Production
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paska, J.; Sałek, M.; Surma, T. Current status and perspectives of renewable energy sources in Poland. Renew. Sustain. Energy Rev. 2009, 13, 142–154. [Google Scholar] [CrossRef]
- European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; Official Journal of the European Union: Luxembourg, 2018. [Google Scholar]
- Statistics Poland. Energy from Renewable Sources in 2018; Statistics Poland: Warsaw, Poland, 2019. [Google Scholar]
- Sulewski, P.; Majewski, E.; Wąs, A. The importance of agriculture in the renewable energy production in Poland and the EU. Probl. Agric. Econ. 2017, 1, 50–74. [Google Scholar]
- Piwowar, A.; Dzikuć, M. Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. Energies 2019, 12, 3558. [Google Scholar] [CrossRef] [Green Version]
- Igliński, B.; Piechota, G.; Buczkowski, R. Development of biomass in Polish energy sector: An overview. Clean Techn Env. Policy 2015, 17, 317–329. [Google Scholar] [CrossRef]
- Jasiulewicz, M. The energety potential of agriculture biomass in Polish regions in the aspect of the realize national aim index at the RES 2020 year. Ann. Paaae 2014, 16, 70–76. [Google Scholar]
- Jasiulewicz, M. Implementation of the National Indicative Target for renewable energy sources on the example of biomass in Poland and prospects of achieving this target by 2020. Rural Stud. 2016, 42, 105–112. [Google Scholar]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.F. Biomass for energy in the EU—The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- Błażejczyk, K. Climate and bioclimate of Poland. In Natural and Human Environment of Poland. A Geographical Overview; Degórski, M., Ed.; Polish Academy of Sciences; Institute of Geography and Spatial Organization Polish Geographical Society: Warsaw, Poland, 2006; pp. 31–48. [Google Scholar]
- Mocek, A. (Ed.) Soil Science; Polish Scientific Publishers: Warsaw, Poland, 2015. [Google Scholar]
- Witek, T. (Ed.) Valorisation of Polish Agricultural Production Space by Commune; Institute of Soil Science and Plant Cultivation: Pulawy, Poland, 1981. [Google Scholar]
- Institute of Soil Science and Plant Cultivation (IUNG). Valorisation of the Agricultural Production Space; Institute of Soil Science and Plant Cultivation: Pulawy, Poland, 2007. [Google Scholar]
- Łabaz, B.; Kabała, C. Origin, properties and classification of “black earths” in Poland. Soil Sci. Annu. 2014, 65, 80–90. [Google Scholar]
- Łabaz, B.; Kabała, C.; Dudek, M.; Waroszewski, J. Morphological diversity of chernozemic soils in south-western Poland. Soil Sci. Annu. 2019, 70, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Oil and Gas Institute—National Research Institute (IniG—PIB). Guidelines for the Determination of the Lifecycle per Unit Values of GHG Emissions for Biofuels, Bioliquids; Oil and Gas Institute—National Research Institute: Cracow, Poland, 2017. [Google Scholar]
- European Union. Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 Relating to the Quality of Petrol and Diesel Fuels and Amending Council Directive 93/12/EEC; Official Journal of the European Union: Luxembourg, 1998. [Google Scholar]
- European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; Official Journal of the European Union: Luxembourg, 2009. [Google Scholar]
- Rogowska, D.; Berdechowski, K.; Łaczek, T. The development of the KZR INiG System—European certification scheme. Naft. -Gaz 2016, 5, 370–375. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- BioGrace. Available online: https://www.biograce.net (accessed on 17 February 2020).
- European Commission. Joint Research Centre. GNOC—Global Nitrous Oxide Calculator. Available online: https://gnoc.jrc.ec.europa.eu (accessed on 17 February 2020).
- European Union. Communication from the Commission on the Practical Implementation of the EU Biofuels and Bioliquids Sustainability Scheme and on Counting Rules for Biofuels (2010/C 160/02); Official Journal of the European Union: Luxembourg, 2010. [Google Scholar]
- Amon, B.; Hutchings, N.; Vinther, F.P.; Nielsen, P.K.; Poulsen, H.D.; Kristensen, I.S.; Pietrzak, S. Analysis of Methodologies for Calculating Greenhouse Gas and ammonia Emissions and Nutrient Balances; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Köble, R. The Global Nitrous Oxide Calculator—GNOC—Online Tool Manual; European Commission, Joint Research Centre, Institute for Energy and Transport: Ispra, Italy, 2013. [Google Scholar]
- Syp, A.; Faber, A.; Kozak, M. Assessment of N2O emissions from rapeseed cultivation in Poland by various approaches. Int. Agrophys. 2016, 30, 501–507. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, A.L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Edwards, R.; Mulligan, D.; Giuntoli, J.; Agostini, A.; Boulamanti, A.; Koeble, R.; Marelli, L.; Moro, A.; Padella, M. Assessing GHG Default Emissions from Biofuels in EU Legislation. Review of Input Database to Calculate Default GHG Emissions, Following Expert Consultation 22–23 November 2011, JRC Scientific and Policy Reports. EUR 25595 EN; European Commission, Joint Research Centre, Institute for Energy and Transpor: Ispra, Italy, 2012. [Google Scholar]
- Ruser, R.; Fuß, R.; Andres, M.; Hegewald, H.; Kesenheimer, K.; Köbke, S.; Räbiger, T.; Suarez Quinones, T.; Augustin, J.; Christen, O.; et al. Nitrous oxide emissions from winter oilseed rape cultivation. Agric. Ecosyst. Environ. 2017, 249, 57–69. [Google Scholar] [CrossRef]
- Cherubini, F.; Peters, G.P.; Berntsen, T.; Strømman, A.H.; Hertwich, E. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. Gcb Bioenergy 2011, 3, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Brack, D. Woody Biomass for Power and Heat. Impacts on the Global Climate; The Royal Institute of International Affairs: London, UK, 2017. [Google Scholar]
- Syp, A.; Gębka, A.; Żukiewicz, A. N2O emissions in arable farm. Ann. Paaae 2016, 18, 328–332. [Google Scholar]
- Jarosz, Z.; Faber, A. Changes in the development of the sector of liquid biofuels. Ann. Paaae 2016, 18, 110–116. [Google Scholar]
- Rajaniemi, M.; Mikkola, H.; Ahokas, J. Greenhouse gas emissions from oats, barley, wheat and rye production. Agron. Res. 2011, 9, 189–195. [Google Scholar]
- Sapkota, T.B.; Aryal, J.P.; Khatri-Chhetri, A.; Shirsath, P.B.; Arumugam, P.; Stirling, C.M. Identifying high-yield low-emission pathways for the cereal production in South Asia. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Tongwane, M.; Mdlambuzi, T.; Moeletsi, M.; Tsubo, M.; Mliswa, V.; Grootboom, L. Greenhouse gas emissions from different crop production and management practices in South Africa. Environ. Dev. 2016, 19, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Syp, A.; Faber, A.; Borzęcka-Walker, M.; Osuch, D. Assessment of Greenhouse Gas Emissions in Winter Wheat Farms Using Data Envelopment Analysis Approach. Pol. J. Environ. Stud. 2015, 24, 2197–2203. [Google Scholar] [CrossRef]
- Brock, P.; Madden, P.; Schwenke, G.; Herridge, D. Greenhouse gas emissions profile for 1 tonne of wheat produced in Central Zone (East) New South Wales: A life cycle assessment approach. Crop Pasture Sci. 2012, 63, 319–329. [Google Scholar] [CrossRef]
- Mosier, A.R.; Duxbury, J.M.; Freney, J.R.; Heinemeyer, O.; Minami, K. Nitrous Oxide Emissions from Agricultural Fields: Assessment, Measurement and Mitigation. In Progress in Nitrogen Cycling Studies; Van Cleemput, O., Hofman, G., Vermoesen, A., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 68, pp. 95–108. [Google Scholar]
- Bouwman, A.F. Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosystems 1996, 46, 53–70. [Google Scholar] [CrossRef]
- Wiśniewski, P. Assessment of nitrous oxide emissions from agricultural soils at a local level in Poland. Int. Agrophys. 2019, 33, 303–311. [Google Scholar] [CrossRef]
- Jarosz, Z.; Faber, A. The possibility of agricultural emission limitations from corn cultivation on bioethanol. Ann. Paaae 2016, 18, 120–126. [Google Scholar]
- Syp, A.; Faber, A. Comparison of N2O emissions from winter wheat cultivation in Poland applying IPCC (Tier 1) method and DNDC model. Ann. Paaae 2016, 18, 254–259. [Google Scholar]
- Walter, K.; Don, A.; Fuß, R.; Kern, J.; Drewer, J.; Flessa, H. Direct nitrous oxide emissions from oilseed rape cropping—A meta-analysis. Gcb Bioenergy 2014, 7, 1260–1271. [Google Scholar] [CrossRef] [Green Version]
- Syp, A.; Faber, A.; Kozak, M. Comparison of N2O emissions from winter wheat cultivation in Poland applying Tier 1 and 2 IPCC methods. Ann. Paaae 2016, 18, 254–259. [Google Scholar]
- Rogowska, D. The assessment of the impact of factors occurring on the cultivation stage on GHG emission in the ethanol life cycle. Naft. -Gaz 2017, 2, 119–125. [Google Scholar] [CrossRef]
- Hasler, K.; Bröring, S.; Omta, O.S.W.F.; Olfs, H.W. Eco-innovations in the German fertilizer supply chain: Impact on the carbon footprint of fertilizers. Plant Soil Environ. 2017, 63, 531–544. [Google Scholar]
- Haverkort, A.J.; Sandaña, P.; Kalazich, J. Yield Gaps and Ecological Footprints of Potato Production Systems in Chile. Potato Res. 2014, 57, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Dyer, J.A.; Desjardins, R.L. The Impact of Farm Machinery Management on the Greenhouse Gas Emissions from Canadian Agriculture. J. Sustain. Agric. 2003, 22, 59–74. [Google Scholar] [CrossRef]
- Jarosz, Z.; Księżak, J.; Faber, A. Assessment of greenhouse gas emissions in systems used in croping maize for bioethanol production. Ann. Paaae 2017, 19, 60–65. [Google Scholar] [CrossRef]
- Skowrońska, M.; Filipek, T. Life cycle assessment of fertilizers: A review. Int. Agrophys. 2014, 28, 101–110. [Google Scholar] [CrossRef]
No. of Farms | Place | Farm Area (Hectares) | Voivodeship | District |
---|---|---|---|---|
1 | Banie | 900 | West Pomeranian | Gryfice |
2 | Świerzno | 100 | West Pomeranian | Kamień Pomorski |
3 | Gryfice Zdrój | 300 | West Pomeranian | Gryfice |
4 | Trzebiatów | 60 | West Pomeranian | Gryfice |
5 | Kicko | 120 | West Pomeranian | Stargard |
6 | Lusowo | 65 | West Pomeranian | Gryfice |
7 | Chojna | 700 | West Pomeranian | Gryfino |
8 | Płoty | 180 | West Pomeranian | Gryfice |
9 | Gryfice | 165 | West Pomeranian | Gryfice |
10 | Gościejewo | 142.5 | West Pomeranian | Gryfice |
11 | Swobnica | 121 | West Pomeranian | Gryfino |
12 | Godków | 350 | West Pomeranian | Gryfino |
13 | Mycielin | 250 | Lubusz | Żagań |
14 | Brzozowa | 68.5 | Lubusz | Sulęcin |
15 | Świebodzin | 520 | Lubusz | Świebodzin |
No. of Farms | Crop | Seed (kg/ha) | Yield (t/ha) | Mineral Fertilizers (kg/ha Pure Nutrient) | Pesticides (kg/ha) | Fuel Consumption (l/ha) | |||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K | CaO | ||||||
1 | wheat | 117 | 6.8 | 61.1 | 21.2 | 48.0 | 0 | 1.0 | 120 |
triticale | 135 | 10.0 | 53.1 | 21.2 | 48.0 | 0 | 1.0 | 85 | |
2 | wheat | 180 | 5.8 | 46.0 | 40.0 | 60.0 | 0 | 0.02 | 100 |
triticale | 180 | 5.8 | 46.0 | 40.0 | 60.0 | 0 | 0.02 | 100 | |
3 | maize | 60 | 7.0 | 8.0 | 6.3 | 72.0 | 1000 | 0.2 | 80 |
4 | rye | 120 | 4.5 | 23.8 | 6.0 | 12.0 | 0 | 0 | 80 |
5 | triticale | 120 | 6.0 | 45.6 | 30.0 | 140.0 | 0 | 0.4 | 80 |
6 | triticale | 200 | 6.0 | 51.7 | 20.0 | 30.0 | 33.4 | 1.1 | 85 |
7 | wheat | 160 | 7.0 | 53.8 | 6.0 | 25.0 | 333.3 | 0.2 | 105 |
triticale | 150 | 5.5 | 46.6 | 0 | 0 | 222 | 0.2 | 105 | |
maize | 20 | 9.0 | 46.2 | 13.8 | 24.0 | 333.3 | 0.1 | 105 | |
8 | rye | 180 | 5.0 | 30.1 | 2.4 | 3.6 | 500 | 1.2 | 100 |
9 | triticale | 200 | 4.5 | 30.1 | 2.4 | 3.6 | 500 | 1.2 | 100 |
10 | triticale | 160 | 5.0 | 26.0 | 14.4 | 14.4 | 0 | 0 | 105 |
11 | triticale | 165 | 7.2 | 28.8 | 13.8 | 26.4 | 387.5 | 1.0 | 87 |
12 | triticale | 110 | 6.0 | 39.2 | 0 | 40.0 | 750 | 0.4 | 110 |
13 | wheat | 140 | 8.0 | 41.9 | 21.2 | 4.0 | 0 | 0.8 | 140 |
triticale | 150 | 6.0 | 39.1 | 21.2 | 40.0 | 0 | 0.8 | 80 | |
14 | rye | 150 | 5.0 | 0 | 0 | 0 | 0 | 0.2 | 85 |
15 | maize | 20 | 5.0 | 57.6 | 32.0 | 48.0 | 0 | 0.06 | 85 |
No. of Farms | Crop | eec (kg CO2eq/t Dry Matter) |
---|---|---|
1 | wheat | 113.4 |
triticale | 74.4 | |
2 | wheat | 112.4 |
triticale | 104.5 | |
3 | maize | 77.6 |
4 | rye | 78.1 |
5 | triticale | 106.8 |
6 | triticale | 108.4 |
7 | wheat | 105.6 |
triticale | 99.8 | |
maize | 76.7 | |
8 | rye | 98.0 |
9 | triticale | 108.5 |
10 | triticale | 79.0 |
11 | triticale | 76.0 |
12 | triticale | 101.4 |
13 | wheat | 82.9 |
triticale | 95.2 | |
14 | rye | 41.5 |
15 | maize | 147.2 |
Total | minimum | 41.5 |
maximum | 147.2 | |
average | 94.4 | |
σ | 21.9 |
No. of Farms | Crop | Share of Individual Emission Sources (%) | |||
---|---|---|---|---|---|
eseed | echem | efield | emm | ||
1 | wheat | 4.8 | 40.3 | 53.5 | 1.4 |
triticale | 5.7 | 36.9 | 56.4 | 1.0 | |
2 | wheat | 8.5 | 39.6 | 50.6 | 1.3 |
triticale | 9.1 | 42.6 | 46.9 | 1.4 | |
3 | maize | 5.5 | 53.8 | 39.1 | 1.5 |
4 | rye | 10.9 | 31.6 | 55.5 | 2.0 |
5 | triticale | 5.8 | 47.8 | 45.3 | 1.1 |
6 | triticale | 9.8 | 41.1 | 47.9 | 1.1 |
7 | wheat | 6.7 | 38.3 | 53.8 | 1.2 |
triticale | 8.5 | 38.8 | 51.0 | 1.6 | |
maize | 1.3 | 39.8 | 57.6 | 1.4 | |
8 | rye | 11.2 | 42.0 | 45.0 | 1.7 |
9 | triticale | 12.5 | 42.6 | 43.2 | 1.7 |
10 | triticale | 12.2 | 31.4 | 54.1 | 2.2 |
11 | triticale | 11.3 | 24.1 | 63.0 | 1.6 |
12 | triticale | 5.5 | 48.0 | 45.0 | 1.5 |
13 | wheat | 6.4 | 32.6 | 59.9 | 1.0 |
triticale | 8.1 | 36.0 | 54.7 | 1.2 | |
14 | rye | 22.2 | 0.8 | 73.5 | 3.4 |
15 | maize | 1.1 | 39.2 | 58.7 | 1.0 |
Total | minimum | 1.1 | 0.8 | 39.1 | 1.0 |
maximum | 22.2 | 53.8 | 73.5 | 3.4 | |
average | 8.4 | 37.4 | 52.7 | 1.5 | |
σ | 4.6 | 10.8 | 7.9 | 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, P.; Kistowski, M. Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland. Atmosphere 2020, 11, 394. https://doi.org/10.3390/atmos11040394
Wiśniewski P, Kistowski M. Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland. Atmosphere. 2020; 11(4):394. https://doi.org/10.3390/atmos11040394
Chicago/Turabian StyleWiśniewski, Paweł, and Mariusz Kistowski. 2020. "Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland" Atmosphere 11, no. 4: 394. https://doi.org/10.3390/atmos11040394
APA StyleWiśniewski, P., & Kistowski, M. (2020). Greenhouse Gas Emissions from Cultivation of Plants Used for Biofuel Production in Poland. Atmosphere, 11(4), 394. https://doi.org/10.3390/atmos11040394