Estimating Methane Emissions from a Dairy Farm Using a Computer Program
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kolasa-Więcek, A. Regression modeling of agrriculture greenhouse gases emissions in Poland. Ecol. Chem. Eng. A 2012, 19, 1383–1391. [Google Scholar]
- Van Gastelen, S.; Dijkstra, J. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. J. Sci. Food Agric. 2016, 96, 3963–3968. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Sahoo, A.; Kumar Soni, L.; Sharma, P. Methane emission, nutrient utilization, microbial protein synthesis and growth performance in finisher lambs fed complete feed blocks containing phytochemical-rich forages of semi-arid region. Carbon Manag. 2020, 11, 97–107. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungerfeld, E.M. Inhibition of rumen methanogenesis and ruminant productivity: A meta-analysis. Front. Vet. Sci. 2018, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Olijhoek, D.W.; Løvendahl, P.; Lassen, J.; Hellwing, A.L.F.; Höglund, J.K.; Weisbjerg, M.R.; Noel, S.J.; McLean, F.; Højberg, O.; Lund, P. Methane production, rumen fermentation, and diet digestibility of Holstein and Jersey dairy cows being divergent in residual feed intake and fed at 2 forage-to-concentrate ratios. J. Dairy Sci. 2018, 101, 9926–9940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Eckert, M.; Bell, M.; Potterton, S.; Craigon, J.; Saunders, N.; Wilcox, R.; Hunter, M.; Goodman, J.; Garnsworthy, P. Effect of feeding system on enteric methane emissions from individual dairy cows on commercial farms. Land 2018, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef] [PubMed]
- Van Gastelen, S.; Mollenhorst, H.; Antunes-Fernandes, E.C.; Hettinga, K.A.; van Burgsteden, G.G.; Dijkstra, J.; Rademaker, J.L.W. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography–based milk fatty acid profiles. J. Dairy Sci. 2018, 101, 5582–5598. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.; Kebreab, E.; Hristov, N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R.; Brito, A.F.; Boland, T.; Casper, D.; et al. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob. Chang. Biol. 2018, 24, 3368–3389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Dijkstra, J. The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: Metabolic interpretation and prediction potential. J. Dairy Sci. 2018, 101, 2110–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regulation of the Minister of the Environment of 26 January 2010 on Reference Values for Certain Substances in the Air. J. Laws 2010. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20100160087 (accessed on 28 April 2019).
- Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016L2284&from=EN (accessed on 5 December 2019).
- Goopy, J.P.; Chang, C.; Tomkins, N. A Comparison of methodologies for measuring methane emissions from ruminants. In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture; Rosenstock, T.S., Rufino, M.C., Butterbach-Bahl, K., Wollenberg, E., Richards, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 97–117. [Google Scholar]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef]
- Fischer, T.M.; Gilmour, A.R.; Van der Werf, J.H. Computing approximate standard errors for genetic parameters derived from random regression models fitted by average information REML. Genet. Sel. Evol. 2004, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Garnsworthy, P.C.; Craigon, J.; Hernandez-Medrano, J.H.; Saunders, N. Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci. 2012, 95, 3181–3189. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, B.A.; Hayes, E.T.; Curran, T.P.; Dodd, V.A. A dispersion modelling approach to determining the odour impact of intensive pig production units in Ireland. Bioresour. Technol. 2004, 91, 145–152. [Google Scholar] [CrossRef]
- Sarkar, U.; Hobbs, S.E.; Longhurst, P. Dispersion of odour: A case study with a municipal solid waste landfill site in North London, United Kingdom. J. Environ. Manag. 2003, 68, 153–160. [Google Scholar] [CrossRef]
- Podkówka, Z.; Podkówka, W. Emisja gazów cieplarnianych przez krowy. Przegląd Hodowlany 2011, 3, 1–4. (In Polish) [Google Scholar]
- Ahring, B.K.; Murali, N.; Srinivas, K. Fermentation of cellulose with a mixed microbial rumen culture with and without methanogenesis. Ferment. Technol. 2018, 7, 152. [Google Scholar] [CrossRef]
- Lassen, J.; Løvendahl, P.; Madsen, J. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J. Dairy Sci. 2012, 95, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, N.W.; McGinn, S.M.; Turner, D.A.; Charmley, E. Comparison of open-circuit respiration chambers with a micrometeorological method for determining methane emissions from beef cattle grazing a tropical pasture. Anim. Feed Sci. Technol. 2011, 166, 240–247. [Google Scholar] [CrossRef]
- Jonker, A.; Hickey, S.M.; Rowe, S.J.; Janssen, P.H.; Shackell, G.H.; Elmes, S.; Bain, W.E.; Wing, J.; Greer, G.J.; Bryson, B.; et al. Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers. J. Anim. Sci. 2018, 96, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Difford, G.F.; Plichta, D.R.; Løvendahl, P.; Lassen, J.; Noel, S.J.; Højberg, O.; Wright, A.D.G.; Zhu, Z.; Kristensen, L.; Nielsen, H.B.; et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 2018, 14, e1007580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pszczola, M.; Strabel, T.; Mucha, S.; Sell-Kubiak, E. Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Van Engelen, S.; Bovenhuis, H.; Van der Tol, P.P.J.; Visker, M.H.P.W. Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems. J. Dairy Sci. 2018, 101, 2226–2234. [Google Scholar] [CrossRef] [Green Version]
- Pszczola, M.; Rzewuska, K.; Mucha, S.; Strabel, T. Heritability of methane emissions from dairy cows over a lactation measured on commercial farms. J. Anim. Sci. 2017, 95, 4813–4819. [Google Scholar] [CrossRef] [Green Version]
- Bluett, J.; Gimson, N.; Fisher, G.; Heydenrych, C.; Freeman, T.; Godfrey, J. Good Practice Guide for Atmospheric Dispersion Modelling; Ministry for the Environment: Wellington, New Zealand, 2004. [Google Scholar]
- Yang, Z.; Yao, Q.; Buser, M.D.; Alfieri, J.G.; Li, H.; Torrents, A.; McConnell, L.L.; Downey, P.M.; Hapeman, C.J. Modification and validation of the Gaussian plume model (GPM) to predict ammonia and particulate matter dispersion. Atmos. Pollut. Res. 2020, 11, 1063–1072. [Google Scholar] [CrossRef]
- Chianese, D.S.; Rotz, C.A.; Richard, T.L. Simulating methane emissions from dairy farms. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2008, Providence, RI, USA, 29 June–2 July 2008; p. 084098. [Google Scholar]
- Hegarty, R.S.; Goopy, J.P.; Herd, R.M.; McCorkell, B. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 2007, 85, 1479–1486. [Google Scholar] [CrossRef]
- Wlazło, Ł.; Nowakowicz-Dębek, B.; Kapica, J.; Kwiecień, M.; Pawlak, H. Removal of ammonia from poultry manure by aluminosilicates. J. Environ. Manag. 2016, 183, 722–725. [Google Scholar] [CrossRef]
- Cottle, D.J.; Van Der Werf, J.H.J. Optimising the proportion of selection candidates measured for feed intake for a beef cattle breeding objective that includes methane emissions. J. Anim. Sci. 2017, 95, 1030–1041. [Google Scholar] [CrossRef]
- Nowakowicz-Dębek, B.; Wlazło, Ł.; Stasińska, B.; Kułażyński, M.; Ossowski, M.; Krzaczek, P.; Bis-Wencel, H. Emission of methane from intensive pig breeding. Przem. Chem. 2017, 11, 2353–2355. [Google Scholar]
- Wlazło, Ł.; Nowakowicz-Dębek, B.; Kałużyński, M.; Wnuk, W.; Ossowski, M. Modeling the spread of ammonia in atmospheric air around a poultry farm. Przem. Chem. 2018, 4, 645–647. [Google Scholar]
- Commission Regulation (EU) No 601/2012 of 21 June 2012 on Monitoring and Reporting on Greenhouse Gas Emissions in Accordance with Directive 2003/87/EC of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:181:0030:0104:EN:PDF (accessed on 28 April 2019).
- Directive 2003/35/EC of the European Parliament and of the Council of 26 May 2003 Providing for Public Participation in Respect of the Drawing up of Certain Plans and Programmes Relating to the Environment and Amending with Regard to Public Participation and Access to Justice Council Directives 85/337/EEC and 96/61/EC. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:4a80a6c9-cdb3-4e27-a721-d5df1a0535bc.0004.02/DOC_1&format=PDF (accessed on 30 April 2019).
Component | Dry Matter (%) | Milk Production (kg) | Share of Dry Matter in TMR (kg) |
---|---|---|---|
Maize silage | 36 | 24 | 6.8 |
Alfalfa silage | 47 | 6.0 | 2.8 |
Grass mixture (Lolium multiflorum, Trifolium incarnatum L, Vicia villosa) | 37 | 4.0 | 1.5 |
Brewer’s grain | 22 | 10 | 2.2 |
Sugar beet pulp | 24 | 7 | 1.7 |
Water | 0.0 | 4.0 | 0.0 |
Wheat meal | 86 | 2.8 | 2.4 |
Rapeseed meal | 88 | 2.5 | 2.2 |
Additive preventing heating of TMR | 95 | 0.5 | 0.47 |
Symbol | Velocity of Gases | Temperature of Gases | Max Emissions | Average Annual Emissions | Annual Emissions |
---|---|---|---|---|---|
E1 1 | 0.4 m/s | 283 K | 3.51 kg/h | 1.301 kg/h | 11.4 mg/year |
975 mg/s | 361 mg/s |
Max Concentration Smm [mg/m3] | Acceptable Concentration D1 [µg/m3] | Distance of Max Concentration Xmm [m] | Critical State of Equilibrium | Critical Wind Velocity [m/s] | Evaluation of Concentrations at Ground Level |
---|---|---|---|---|---|
1.089 | 3000 | 43.5 | 4 | 1 | 0.1 × D1 < Smm < D1 |
X | Y | Max Concentration (mg/m3) | Average Concentration (mg/m3) | Critical State of Equilibrium | Critical Wind Velocity | Critical Wind Direction | Frequency of Exceedances (%) mg/m3 |
---|---|---|---|---|---|---|---|
80 | 80 | 5.5 | 0.063 | 6 | 1 | NNE | 0.30 |
100 | 80 | 8.2 | 0.103 | 6 | 1 | N | 0.82 |
120 | 80 | 5.5 | 0.070 | 6 | 1 | NNW | 0.28 |
80 | 100 | 8.2 | 0.104 | 6 | 1 | E | 1.03 |
120 | 100 | 8.2 | 0.129 | 6 | 1 | W | 1.15 |
80 | 120 | 5.5 | 0.063 | 6 | 1 | SSE | 0.34 |
100 | 120 | 8.2 | 0.132 | 6 | 1 | S | 1.08 |
120 | 120 | 5.5 | 0.096 | 6 | 1 | SSW | 0.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowakowicz-Dębek, B.; Wlazło, Ł.; Szymula, A.; Ossowski, M.; Kasela, M.; Chmielowiec-Korzeniowska, A.; Bis-Wencel, H. Estimating Methane Emissions from a Dairy Farm Using a Computer Program. Atmosphere 2020, 11, 803. https://doi.org/10.3390/atmos11080803
Nowakowicz-Dębek B, Wlazło Ł, Szymula A, Ossowski M, Kasela M, Chmielowiec-Korzeniowska A, Bis-Wencel H. Estimating Methane Emissions from a Dairy Farm Using a Computer Program. Atmosphere. 2020; 11(8):803. https://doi.org/10.3390/atmos11080803
Chicago/Turabian StyleNowakowicz-Dębek, Bożena, Łukasz Wlazło, Agnieszka Szymula, Mateusz Ossowski, Martyna Kasela, Anna Chmielowiec-Korzeniowska, and Hanna Bis-Wencel. 2020. "Estimating Methane Emissions from a Dairy Farm Using a Computer Program" Atmosphere 11, no. 8: 803. https://doi.org/10.3390/atmos11080803
APA StyleNowakowicz-Dębek, B., Wlazło, Ł., Szymula, A., Ossowski, M., Kasela, M., Chmielowiec-Korzeniowska, A., & Bis-Wencel, H. (2020). Estimating Methane Emissions from a Dairy Farm Using a Computer Program. Atmosphere, 11(8), 803. https://doi.org/10.3390/atmos11080803