Saharan Hot and Dry Sirocco Winds Drive Extreme Fire Events in Mediterranean Tunisia (North Africa)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Fire Data
2.3. Climate Data
2.4. Statistical Analysis
3. Results
3.1. Time-Lagged Fire/Weather Analysis
3.2. Fire Weather Frequency and Fire Duration
3.3. Fire Size and Sirocco Duration
3.4. Temporal Fire Analysis and Modeling: 1950–2006
4. Discussion
4.1. Heat Waves and Fire Events in the Mediterranean Basin
4.2. Synoptic Conditions Associated to Sirocco Events and Climate Projections
4.3. Future Relevant Indices for Fire Hazard Assessment and Modelling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mouillot, F.; Ratte, J.P.; Joffre, R.; Mouillot, D.; Rambal, S. Long term forest dynamic after land abandonment in a fire prone Mediterranean landscape. Landsc. Ecol. 2005, 20, 101–112. [Google Scholar] [CrossRef]
- Viedma, O. The influence of topography and fire in controlling landscape composition and structure in Sierra de Gredos (Central Spain). Landsc. Ecol. 2008, 23, 657–672. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 26, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krawchuck, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Loepfe, L.; Rodrigo, A.; Lloret, F. Two thresholds determine climatic control of forest fire size in Europe and northern Africa. Reg. Environ. Chang. 2014, 14, 1395–1404. [Google Scholar] [CrossRef]
- Pausas, J.G.; Paula, S. Fuel shapes the fire-climate relationship: Evidence from Mediterranean ecosystems. Glob. Ecol. 2012, 21, 1074–1082. [Google Scholar] [CrossRef]
- Urbieta, I.R.; Zavala, G.; Bedia, J.; Gutierrez, J.M.; San Miguel-Ayanz, J.; Camia, A.; Keeley, J.E.; Moreno, J.M. Fire activity as a function of fire weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific Western USA. Environ. Res. Lett. 2015, 10, 11403. [Google Scholar] [CrossRef] [Green Version]
- Xystrakis, F.; Kallimanis, A.S.; Dimopoulos, P.; Halley, J.M.; Koutsias, N. Precipitation dominates fire occurrence in Greece (1900–2010): Its dual role in fuel build-up and dryness. Nat. Hazards Earth Syst. 2014, 14, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Gudmundson, L.; Rego, F.C.; Rocha, M.; Seneviratne, S.I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environ. Res. Lett. 2014, 9, 084008. [Google Scholar] [CrossRef]
- Turco, M.; von Hardenberg, J.; Aghakouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires on Mediterranean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, C.E.R.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Felfili, J.; et al. Savanna vegetation-fire-climate relationships differ among continents. Science 2014, 343, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Parks, S.A.; Parisien, M.A.; Miller, C. Spatial bottom-up controls on fire likelihood vary across western North America. Ecosphere 2012, 3, 1–20. [Google Scholar] [CrossRef]
- Cardil, A.; Molina, D.M.; Kobziar, L.N. Extreme temperature days and their potential impacts on southern Europe. Nat. Hazards Earth Syst. 2014, 14, 3005–3014. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte-Real, J. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Hernandez, C.; Drobinski, P.; Turquety, S. How much does weather control fire size and intensity in the Mediterranean region? Ann. Geophys. 2012, 33, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Ruffault, J.; Moron, V.; Trigo, R.M.; Curt, T. Objective identification of multiple large fire climatologies and application to a Mediterranean ecosystem. Environ. Res. Lett. 2016, 11, 075006. [Google Scholar] [CrossRef] [Green Version]
- Azri, C.; Abida, H.; Medhioub, K. Geochemical behavior of the Tunisian background aerosols in sirocco wind circulations. Adv. Atmos. Sci. 2016, 26, 390–402. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Barbero, R.; Nauslar, N.J. Diagnosis Santa Ana winds in southern California with synoptic-scale analysis. Weather Forecast. 2013, 28, 704–710. [Google Scholar] [CrossRef]
- Jin, Y.F.; Goulden, M.L.; Faivre, N.; Veraverbeke, S.; Sun, F.P.; Hall, A.; Hand, M.S.; Hook, S.; Randerson, J.T. Identification of two distinct fire regimes in southern California: Implications for economic impact and future change. Environ. Res. Lett. 2015, 10, 094005. [Google Scholar] [CrossRef] [Green Version]
- Belhadj-Khedher, C.; Koutsias, N.; Karamitsou, A.; El-Melki, T.; Ouelhazi, B.; Hamdi, A.; Nouri, H.; Mouillot, F. A revised historical fire regime analysis in Tunisia (1985–2010) from a critical analysis of the national fire database and remote sensing. Forests 2018, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Chakroun, H.; Mouillot, F.; Hamdi, A. Regional equivalent water thickness modeling from remote sensing across a tree cover/LAI gradient in Mediterranean forests of Northern Tunisia. Remote Sens. 2015, 7, 1937–1961. [Google Scholar] [CrossRef] [Green Version]
- Rezgui, F.; Gharbi, F.; Zribi, L.; Mouillot, F.; Ourcival, J.M.; Hanchi, B. Soil respiration behavior in a Mediterranean Aleppo pine forest in north Tunisia. Appl. Ecol. Environ. Res. 2016, 14, 343–356. [Google Scholar] [CrossRef]
- Longepierre, D.; Mouillot, F.; Ouelhazi, B.; Ourcival, J.M.; Rocheteau, A.; Degueldre, D.; Rejeb, M.N. True water constraint under a rainfall interception experiment in a =Mediterranean shrubland (Northern Tunisia): Confronting discrete measurements with a plant soil water budget model. Plant Ecol. 2014, 215, 779–794. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire product. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosberg, M.A. Weather in wildland fire management: The fire weather index. In Proceedings of the Conference on Sierra Nevada Meterology, Lake Tahoe, CA, USA, 19–21 June 1978; pp. 1–4. [Google Scholar]
- Pelizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between seasonal patterns of live fuel moisture and meterological drought indices for Mediterranean shrubland species. Int. J. Wildl. Fire 2007, 26, 232–241. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Angulo, M. A multi-scalar global drought data set: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1354. [Google Scholar] [CrossRef] [Green Version]
- Royston, P. An extension of Shapiro and Wilk’s W test for normality to large samples. J. R. Stat. Soc. C Appl. 1982, 31, 115–124. [Google Scholar] [CrossRef]
- Gouhier, T.C.; Guichard, F. Synchrony: Quantifying variability in space and time. Methods Ecol. Evol. 2014, 5, 524–533. [Google Scholar] [CrossRef]
- Zribi, L.; Mouillot, F.; Guibal, F.; Rejeb, S.; Rejeb, M.N.; Gharbi, F. Deep soil conditions make Mediterranean coirk oak stem growth vulnerable to autumnal rainfall decline in Tunisia. Forests 2016, 7, 245. [Google Scholar] [CrossRef] [Green Version]
- Chakroun, H.; Mouillot, F.; Nasr, Z.; Nouri, M.; Ennajah, A.; Ourcival, J.M. Performance of LAI-MODIS and the influence on drought simulation in a Mediterranean forest. Ecohydrology 2014, 7, 1014–1028. [Google Scholar] [CrossRef]
- Zribi, L.; Mouillot, F.; Gharbi, F.; Ourcival, J.M.; Hanchi, B. Warm and fertile sub humid conditions enhance litterfall to sustain high soil respiration fluxes in a Mediterranean cork oak forest. Forests 2015, 6, 2918–2940. [Google Scholar] [CrossRef]
- Touchan, R.; Anchukaitis, K.J.; Meko, D.M.; Sabir, M.; Attalah, S.; Aloui, A. Spatiotemporal drought variability in northwestern Africa over the last nine centuries. Clim. Dyn. 2011, 37, 237–252. [Google Scholar] [CrossRef]
- Cardil, A.; Eastaugh, C.S.; Molina, D.M. Extreme temperature conditions and wildland fires in Spain. Theor. Appl. Clim. 2011, 122, 219–228. [Google Scholar] [CrossRef]
- Cardil, A.; Merenciano, D.; Molina-Terren, D.M. Wildland fire typologies and extreme temperatures in NE Spain. IForest 2017, 10, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Molina-Terren, D.M.; Cardil, A. Temperature determining larger wildland fires in NE Spain. Theor. Appl. Clim. 2016, 125, 295–302. [Google Scholar] [CrossRef]
- Cardil, A.; Salis, M.; Spano, D.; Delogu, G.; Terren, D.M. Large wildland fires and extreme temperatures in Sardinia (Italy). IForest 2014, 7, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.G.; Trigo, R.M.; da Camara, C.C.; Pereira, J.M.C.; Leite, S.M. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Giannaros, T.M.; Dafis, S. Meteorological conditions conducive to the rapid spread of the deadly wildfire in eastern Attica, Greece. Bull. Am. Meterol. Soc. 2019, 18, 0231. [Google Scholar] [CrossRef]
- Ruffault, J.; Mouillot, F. How a new fire suppression policy can abruptly reshape the fire-weather relationship. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
- Montaldo, N.; Oren, R. The way the wind blows matters to ecosystem water use efficiency. Agric. For. Meteorol. 2016, 217, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Drake, J.E.; Tjoelker, M.G.; Varhammar, A.; Medlyn, B.E.; Reich, P.B.; Lgih, A.; Pfaitsch, S.; Blackman, C.J.; Lopez, R.; Aspinwall, M.J.; et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 2018, 24, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Henia, L. Le sirocco et les types de temps à Sirocco en Tunisie. Revue Tunisiennne Géographie 1980, 5, 61–87. [Google Scholar]
- Traboulsi, M.; Ben Boubaker, H. High heat and associated atmospheric circulation around the Mediterranean: Case of the Tunisian and Syrian-lebanese coasts. Territoire Movement Revue Géographie Aménagement 2012, 14–15, 106–119. [Google Scholar] [CrossRef]
- Dahech, S.; Beltrando, G.; Henia, L. Le sirocco et son impact sur l’agriculture et la qualité de l’air dans la region de Sfax (Tunisie). Sécheresse 2007, 18, 177–184. [Google Scholar]
- Dammark, R.; Bahloul, M.; Chabbi, I.; Azri, C. Spatial and temporal variations of dust particle deposition at three “urban/suburban” areas in Sfax city (Tunisia). Environ. Monitor. Assess. 2016, 188, 336. [Google Scholar] [CrossRef] [PubMed]
- Ellouz, F.; Masmoudi, M.; Medhioub, K.; Azri, C. Temporal evolution and particle size distribution of aerosol constituents collected in Northern Tunisia (Boukornine) under sirocco wind circulations. Arab. J. Geosci. 2014, 7, 4399–4406. [Google Scholar] [CrossRef]
- Trabelsi, A.; Masmoudi, M. An investigation of atmospheric turbidity over the Kerkennah island in Tunisia. Atmos. Res. 2011, 101, 22–30. [Google Scholar] [CrossRef]
- Suman, D.O. Biomass burning in North Africa and its possible relationship to climate change in the Mediterranean basin. In Impact of Desert Dust Across the Mediterranean; Guerzoni, S., Cjhester, R., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 11, pp. 113–122. [Google Scholar]
- Sousa, P.M.; Barriopedro, D.; Ramos, A.M.; Garcia-Herrera, R.; Espirito-Santo, F.; Trigo, R.M. Saharan air intrusion as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Weather Clim. Extremes 2019, 26, 100224. [Google Scholar] [CrossRef]
- Lionello, P.; Sanna, A. Mediterranean wave climate variability and its link with NAO and indian Monsoon. Clim. Dyn. 2005, 25, 611–623. [Google Scholar] [CrossRef]
- Conte, M.; Colacino, M.; Piervitali, E. Atlantic disturbances deeply penetrating the African continent: Effects over Saharan regions and the Mediterranean Basin. In Impact of Desert Dust Across the Mediterranean; Guerzoni, S., Chester, R., Eds.; Springer: Dordrecht, The Netherlands, 1996; Volume 11, pp. 93–102. [Google Scholar]
- Billmire, M.; French, N.H.F.; Loboda, T.; Owen, R.C.; Tyner, M. Santa Ana winds and predictors of wildfire progression in southern California. Int. J. Wildl. Fire 2014, 23, 1119–1129. [Google Scholar] [CrossRef]
- Moritz, M.A.; Moody, T.J.; Krawchuk, M.A.; Hughes, M.; Hall, A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett. 2010, 37, L04801. [Google Scholar] [CrossRef] [Green Version]
- Kolden, C.A.; Abatzoglou, J.T. Spatial distribution of wildfires ignited under katabatic versus non-katabatic winds in Mediterranean southern California USA. Fire 2018, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Sharples, J.J.; Mills, G.A.; McRae, R.H.D.; Weber, R.O. Foehn-like winds and elevated fire danger conditions in southeastern Australia. J. Appl. Meteorol. Climatol. 2010, 49, 1067–1095. [Google Scholar] [CrossRef]
- Fox-Hughes, P. Characteristics of some days involving abrupt increases in fire danger. J. Appl. Meteorol. Climatol. 2015, 54, 2353–2363. [Google Scholar] [CrossRef] [Green Version]
- Engel, C.B.; Lane, T.P.; Reeder, M.J.; Rezny, M. The meteorology of black Saturday. Q. J. R. Meterol. Soc. 2013, 139, 585–599. [Google Scholar] [CrossRef]
- Urrutia-Jalabert, R.; Gonzalez, M.E.; Gonzalez-Reyes, A.; Lara, A.; Garreaud, R. Climate variability and forest fires in central and south-central Chile. Ecosphere 2018, 9, e02171. [Google Scholar] [CrossRef]
- Baldi, M.; Dalu, G.; Maracchi, G.; Pasui, M.; Cesarone, F. Heat waves in the Mediterranean: A local feature or a larger scale effect? Int. J. Climatol. 2006, 26, 1477–1487. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Morales, J.; Gershunov, A. Climate change suppresses Santa Ana winds of southern California and sharpens their seasonality. Geophys. Res. Lett. 2019, 46, 2772–2780. [Google Scholar] [CrossRef]
- Miller, N.L.; Schlegel, N.J. Climate change projected fire weather sensitivity: California Santa Ana wind occurrence. Geophys. Res Lett. 2006, 33, L15711. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Ye, H.; Pepler, A.; Thatcher, M.; Osbrough, S.L.; Evans, J.P.; di Virgilio, G.; Mc Carthy, N. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 2019, 9, 10073. [Google Scholar] [CrossRef] [PubMed]
- Ouzeau, G.; Soubeyroux, J.M.; Schneider, M.; Vautard, R.; Planton, S. Heat waves analysis over France in present and future climate: Application of the new method on the EURO CORDEX ensemble. Clim. Serv. 2016, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warning. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 2007, 34, L11706. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the middle East and North Africa (MENA) in the 21rst century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Vozila, A.B.; Guttler, I.; Ahrens, B.; Obermann-Hellhund, A.; Prtenjak, M.T. Wind over the Adriactic region in CORDEX climate change scenarios. J. Geophys. Res. Atmos. 2019, 124, 110–130. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freebirn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2019, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Field, R.D.; Spessa, A.C.; Aziz, N.A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W.J.; Dowdy, A.J.; Flannigan, M.D.; Manomaiphiboon, K.; et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 2019, 15, 1407–1423. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Rosa-Canovas, J.J.; Bedia, J.; Jerez, S.; Montavez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Yebra, M.; Scortechini, G.; Badi, A.; Beget, M.E.; Boer, M.; Bradstock, R.; Chuvieco, E.; Danson, F.M.; Dennison, P.; de Dios, V.R.; et al. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci. Data 2019, 6, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelli, S.; Maponi, P.; Campetella, G.; Monteverde, P.; Foglia, M.; Paris, E.; Lolis, A.; Panagopoulos, T. Adaptation of the Canadian fire weather index to Mediterranean forests. Nat. Hazards 2015, 75, 1795–1810. [Google Scholar] [CrossRef]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Prentice, I.C.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P.; et al. The Status and challenges of global fire modelling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef] [Green Version]
- Rabin, S.S.; Meton, J.R.; Lasslop, G.; Bachelet, D.; Forrest, M.; Hantson, S.; Kaplan, J.O.; Li, F.; Mangeon, S.; Ward, D.S.; et al. The fire modelling intercomparison project (FIREMIP), phase 1: Experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 2017, 10, 1175–1197. [Google Scholar] [CrossRef] [Green Version]
- Amatulli, G.; Camia, A.; San Miguel-Ayanz, J. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci. Total Environ. 2013, 450, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Mc Donald, J.M.; Srock, A.F.; Charney, J.J. Development and application of a hot-dry-windy index (HDW) climatology. Atmosphere 2018, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Srock, A.F.; Charney, J.J.; Potter, B.E.; Goodrick, S.L. The Hot-Dry-Windy index: A new fire weather index. Atmosphere 2018, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Meddour-Sahar, O. Wildfires in Algeria: Problems and challenges. IForest 2015, 8, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Chergui, B.; Fahd, S.; Santos, X.; Pausas, J.G. Socio economic factors drive fire regime variability in the Mediterranean basin. Ecosystems 2015, 21, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Mitri, G.; Saba, S.; Nader, M.; McWethy, D. Developing Lebanon’s fire danger forecast. Int. J. Disaster Risk Res. 2017, 24, 332–339. [Google Scholar] [CrossRef]
- Turco, M.; Levin, N.; Tessler, N.; Saaroni, H. Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: The case of Israel. Glob. Planet. Chang. 2017, 151, 28–35. [Google Scholar] [CrossRef]
Index | Nsir_Tdiff | Nsir_Tmax | SPEI | ||||
---|---|---|---|---|---|---|---|
Level | Correlation | Synchrony | Correlation | Synchrony | Correlation | Synchrony | |
1 | 0.18 ns | 0.22 ns | 0.13 ns | 0.15 ns | 0.043 ns | 0.13 ns | |
2 | 0.18 ns | 0.22 ns | 0.20 ns | 0.18 ns | −0.12 ns | 0.27 ns | |
3 | 0.27 ° | 0.23 ns | 0.26 * | 0.15 ns | −0.13 ns | 0.36° | |
4 | 0.27 ° | 0.24 ns | 0.30 * | 0.24 ns | −0.15 ns | 0.26 ns | |
5 | 0.21 . | 0.41° | 0.32 ° | 0.24 ns | −0.17 ns | 0.21 ns | |
6 | 0.24 ° | 0.31 ns | 0.31 * | 0.24 ns | −0.16 ns | 0.26 ns | |
7 | 0.40 ** | 0.38 ° | 0.44 *** | 0.45 * | −0.16 ns | 0.25 ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhadj-Khedher, C.; El-Melki, T.; Mouillot, F. Saharan Hot and Dry Sirocco Winds Drive Extreme Fire Events in Mediterranean Tunisia (North Africa). Atmosphere 2020, 11, 590. https://doi.org/10.3390/atmos11060590
Belhadj-Khedher C, El-Melki T, Mouillot F. Saharan Hot and Dry Sirocco Winds Drive Extreme Fire Events in Mediterranean Tunisia (North Africa). Atmosphere. 2020; 11(6):590. https://doi.org/10.3390/atmos11060590
Chicago/Turabian StyleBelhadj-Khedher, Chiraz, Taoufik El-Melki, and Florent Mouillot. 2020. "Saharan Hot and Dry Sirocco Winds Drive Extreme Fire Events in Mediterranean Tunisia (North Africa)" Atmosphere 11, no. 6: 590. https://doi.org/10.3390/atmos11060590
APA StyleBelhadj-Khedher, C., El-Melki, T., & Mouillot, F. (2020). Saharan Hot and Dry Sirocco Winds Drive Extreme Fire Events in Mediterranean Tunisia (North Africa). Atmosphere, 11(6), 590. https://doi.org/10.3390/atmos11060590