Spatiotemporal Variations and Health Implications of Hazardous Air Pollutants in Ulsan, a Multi-Industrial City in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Sampling Periods and Weather Conditions
2.3. Sampling and Analysis of Vapor Phase HAPs
2.4. Sampling and Analysis of Particulate Phase HAPs
2.5. Quality Control (QC) and Quality Assurance (QA)
2.6. Toxicity Information and Health Risk Assessment
3. Results and Discussion
3.1. Occurrence of Vapor Phase HAPs in Ambient Air
3.2. Occurrence of Particulate Phase HAPs in Ambient Air
3.3. Comparison of HAPs Levels between Industrial and Residential Areas
3.4. Seasonal Variation in HAP Concentrations
3.5. Health Risk Assessment for Carcinogenic HAPs
3.6. Health Risk Assessment for Noncarcinogenic HAPs
3.7. Uncertainty and Limitations of the Risk Assessment
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bari, M.A.; Kindzierski, W.B. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada. Chemosphere 2017, 173, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Chen, Y.; Zhu, X.; Zhong, Q.; Zhuo, S.; Liu, W.; Huang, Y.; Shen, G.; Tao, S. Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China. Atmos. Environ. 2018, 191, 1–8. [Google Scholar] [CrossRef]
- Jia, C.; Foran, J. Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN. Atmos. Environ. 2013, 81, 112–116. [Google Scholar] [CrossRef]
- Ramírez, N.; Cuadras, A.; Rovira, E.; Borrull, F.; Marcé, R.M. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ. Int. 2012, 39, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Roukos, J.; Riffault, V.; Locoge, N.; Plaisance, H. VOC in an urban and industrial harbor on the French North Sea coast during two contrasted meteorological situations. Environ. Pollut. 2009, 157, 3001–3009. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, L.J.S.; Cullen, A.; Westberg, H.; Williamson, J. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle. Environ. Int. 2011, 37, 11–17. [Google Scholar] [CrossRef]
- Wu, C.; Wu, S.; Wu, Y.H.; Cullen, A.C.; Larson, T.V.; Williamson, J.; Liu, L.J.S. Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ. Int. 2009, 35, 516–522. [Google Scholar] [CrossRef]
- Health Impacts of Air Pollution. Available online: https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution (accessed on 15 January 2019).
- National Research Council. Air Quality Management in the United States; The National Academies Press: Washington, DC, USA, 2004; pp. 55–58. [Google Scholar]
- What are Hazardous Air Pollutants? Available online: https://www.epa.gov/haps/what-are-hazardous-air-pollutants (accessed on 15 January 2019).
- World Health Organization (WHO). Health Risk Assessment of Air Pollution—General Principles; WHO Regional Office for Europe: Copenhagen, Denmark, 2016; pp. 6–10. [Google Scholar]
- Initial List of Hazardous Air Pollutants with Modifications. Available online: https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications (accessed on 15 March 2019).
- Patrick, D.R. The definition of toxic air pollutants. In Toxic Air Pollution Handbook; Patrick, D.R., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1994; pp. 16–18. [Google Scholar]
- Health Effects Notebook for Hazardous Air Pollutants. Available online: https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants (accessed on 15 June 2019).
- Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, J.N.; Perry, R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water Air Soil Pollut. 1991, 60, 279–300. [Google Scholar] [CrossRef]
- Risk Assessment for Toxic Air Pollutants: A Citizen’s Guide. Available online: https://www3.epa.gov/airtoxics/3_90024.html (accessed on 15 January 2019).
- List of Hazardous Air Pollutants and Priority Pollutants. Available online: https://www.env.go.jp/press/files/jp/16391.pdf (accessed on 15 January 2019). (In Japanese)
- Urban Air Toxics. Available online: https://www.epa.gov/urban-air-toxics/urban-air-toxic-pollutants (accessed on 15 December 2018).
- Introduction of Ulsan. Available online: http://www.ulsan.go.kr/english/Introduction (accessed on 10 December 2018).
- Pollutant Release and Transfer Register (PRTR) Information System in Korea. Available online: http://icis.me.go.kr/prtr/prtrinfo/yearSearch.do (accessed on 15 October 2015).
- Nguyen, T.N.T.; Jung, K.S.; Son, J.M.; Kwon, H.O.; Choi, S.D. Seasonal variation, phase distribution, and source identification of atmospheric polycyclic aromatic hydrocarbons at a semi-rural site in Ulsan, South Korea. Environ. Pollut. 2018, 236, 529–539. [Google Scholar] [CrossRef]
- Choi, S.D.; Kwon, H.O.; Lee, Y.S.; Park, E.J.; Oh, J.Y. Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city. J. Hazard. Mater. 2012, 241–242, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Hieu, N.T.; Lee, B.K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmos. Res. 2010, 98, 526–537. [Google Scholar] [CrossRef]
- Clarke, K.; Kwon, H.O.; Choi, S.D. Fast and reliable source identification of criteria air pollutants in an industrial city. Atmos. Environ. 2014, 95, 239–248. [Google Scholar] [CrossRef]
- Lee, B.K.; Jun, N.Y.; Lee, H.K. Comparison of particulate matter characteristics before, during, and after Asian dust events in Incheon and Ulsan, Korea. Atmos. Environ. 2004, 38, 1535–1545. [Google Scholar] [CrossRef]
- Susaya, J.; Kim, K.H.; Shon, Z.H.; Brown, R.J.C. Demonstration of long-term increases in tropospheric O3 levels: Causes and potential impacts. Chemosphere 2013, 92, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kwon, H.O.; Lee, M.I.; Seo, Y.; Choi, S.D. Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environ. Sci. Pollut. Res. 2019, 26, 5831–5841. [Google Scholar] [CrossRef] [PubMed]
- Vu, V.T.; Lee, B.K.; Kim, J.T.; Lee, C.H.; Kim, I.H. Assessment of carcinogenic risk due to inhalation of polycyclic aromatic hydrocarbons in PM10 from an industrial city: A Korean case-study. J. Hazard. Mater. 2011, 189, 349–356. [Google Scholar] [CrossRef]
- Lee, B.K.; Hieu, N.T. Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol Air Qual. Res. 2011, 11, 679–688. [Google Scholar] [CrossRef]
- Kwon, H.O.; Park, M.K.; Kim, S.J.; Choi, J.; Oh, J.; Ahn, J.Y.; Choi, S.D. Size distributions of atmospheric particulate matter and associated trace metals in the multi-industrial city of Ulsan, Korea. Environ. Eng. Res. 2019, 24, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.A.; Tran, N.L.; Groopman, J.D.; Burke, T.A. Toxicological resources for cumulative risk: An example with hazardous air pollutants. Regul. Toxicol. Pharmacol. 2004, 40, 305–311. [Google Scholar] [CrossRef]
- Morello-Frosch, R.A.; Woodruff, T.J.; Axelrad, D.A.; Caldwell, J.C. Air toxics and health risks in California: The public health implications of outdoor concentrations. Risk Anal. 2000, 20, 273–291. [Google Scholar] [CrossRef]
- Tam, B.N.; Neumann, C.M. A human health assessment of hazardous air pollutants in Portland, OR. J. Environ. Manag. 2004, 73, 131–145. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes, 2nd ed.; USEPA: Cincinnati, OH, USA, 1999; pp. 1–49.
- Baek, S.O.; Suvarapu, L.N.; Seo, Y.K. Occurrence and concentrations of toxic VOCs in the ambient air of Gumi, an electronics-industrial city in Korea. Sensors 2015, 15, 19102–19123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USEPA. Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography, 2nd ed.; USEPA: Cincinnati, OH, USA, 1999; pp. 1–51.
- Cheruiyot, N.K.; Lee, W.J.; Mwangi, J.K.; Wang, L.C.; Lin, N.H.; Lin, Y.C.; Cao, J.; Zhang, R.; Chang-Chien, G.P. An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol Air Qual. Res. 2015, 15, 2730–2762. [Google Scholar] [CrossRef] [Green Version]
- Teil, M.J.; Blanchard, M.; Chevreuil, M. Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci. Total Environ. 2006, 354, 212–223. [Google Scholar] [CrossRef]
- USEPA. Compendium Method TO-13A: Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/ Mass Spectrometry, 2nd ed.; USEPA: Cincinnati, OH, USA, 1999; pp. 1–77.
- USEPA. Compendium Method IO-3.4: Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma Spectroscopy, 2nd ed.; USEPA: Cincinnati, OH, USA, 1999; pp. 6–26.
- USEPA. Standard Operating Procedure for the Determination of Hexavalent Chromium in Ambient Air Analyzed by Ion Chromatography (IC); USEPA: Research Triangle Park, NC, USA, 2006; pp. 5–19.
- Kang, B.W.; Lee, H.S.; Kim, J.H.; Hong, J.H.; Kim, R.H.; Seo, Y.K.; Han, J.S.; Baek, K.M.; Kim, M.J.; Baek, S.O. Distribution of airborne hexavalent chromium concentrations in large industrial complexes in Korea. Asian J. Atmos. Environ. 2016, 10, 208–216. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Definition and Procedure for the Determination of the Method Detection Limit; Revision 2; USEPA: Washington, DC, USA, 2016; pp. 1–6.
- Bari, M.A.; Kindzierski, W.B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Sci. Total Environ. 2018, 631, 627–640. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA-540-R-070-002; Office of Superfund Remediation and Technology Innovation, USEPA: Washington, DC, USA, 2009; pp. 13–24.
- Dose-Response Assessment for Assessing Health Risks Associated with Exposure to Hazardous Air Pollutants. Available online: https://www.epa.gov/fera/dose-response-assessment-assessing-health-risks-associated-exposure-hazardous-air-pollutants (accessed on 15 December 2018).
- IRIS Assessments. Available online: https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm?list_type=alpha (accessed on 18 December 2018).
- Office of Environmental Health Hazard Assessment (OEHHA) Air Chemicals Database. Available online: https://oehha.ca.gov/air/chemicals (accessed on 15 August 2016).
- World Health Organization (WHO). Guidelines for Air Quality; WHO: Geneva, Switzerland, 2000; pp. 55–59. [Google Scholar]
- USEPA. Health Effects Assessment Summary Tables; USEPA: Washington, DC, USA, 1997; pp. 10–14.
- Toxicological Profiles. Available online: https://www.atsdr.cdc.gov/substances/indexAZ.asp (accessed on 15 August 2016).
- Provisional Peer-Reviewed Toxicity Values (PPRTVs) Assessments. Available online: https://www.epa.gov/pprtv/provisional-peer-reviewed-toxicity-values-pprtvs-assessments (accessed on 15 June 2018).
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- USEPA. Provisional Guidance for Qualitative Risk Assessment of Polycyclic Aromatic Hydrocarbons; EPA/600/R-93/089; Office of Research and Development, USEPA: Washington, DC, USA, 1993; pp. 5–8.
- Malcolm, H.M.; Dobson, S. The Calculation of an Environmental Assessment Level (EAL) for Atmospheric PAHs Using Relative Potencies; Report No. DoE/HMIP/RR/94/041; Department of the Environment: London, UK, 1994.
- Technical Support Document for Cancer Potency Factors: Appendix A. A Lookup Table Containing Unit Risk and Cancer Potency Values. Available online: https://oehha.ca.gov/media/downloads/crnr/appendixa.pdf (accessed on 20 June 2019).
- Agents Classified by the IARC Monographs, Volumes 1-124. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 15 January 2019).
- Ho, K.F.; Lee, S.C.; Tsai, W.Y. Carbonyl compounds in the roadside environment of Hong Kong. J. Hazard. Mater. 2006, 133, 24–29. [Google Scholar] [CrossRef]
- Na, G.S.; Kim, Y.P. Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmos. Environ. 2001, 35, 2603–2614. [Google Scholar] [CrossRef]
- Na, K.; Kim, Y.P.; Moon, I.; Moon, K.C. Chemical composition of major VOC emission sources in the Seoul atmosphere. Chemosphere 2004, 55, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.J.; Kim, J.; Yi, S.M.; Zoh, K.D. Analysis of black carbon, particulate matter, and gaseous pollutants in an industrial area in Korea. Atmos. Environ. 2011, 45, 7698–7704. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S.; Godwin, C. VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmos. Environ. 2008, 42, 2083–2100. [Google Scholar] [CrossRef]
- Kume, K.; Ohura, T.; Amagai, T.; Fusaya, M. Field monitoring of volatile organic compounds using passive air samplers in an industrial city in Japan. Environ. Pollut. 2008, 153, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.W.G.; Yao, Y.C.; Tsai, J.H.; Hsu, Y.C.; Chang, L.P.; Chang, K.H. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci. Total Environ. 2008, 398, 154–163. [Google Scholar] [CrossRef]
- Bauer, M.J.; Herrmann, R. Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci. Total Environ. 1997, 208, 49–57. [Google Scholar] [CrossRef]
- Wang, G.; Kawamura, K.; Zhao, X.; Li, Q.; Dai, Z.; Niu, H. Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmos. Environ. 2007, 41, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Korea Industrial Complex Cooperation (KICC). A Statistics of Korean Industrial Complexes for 15 years (2001-10216); KICC: Daegu, Korea, 2017; pp. 60–70. [Google Scholar]
- Lü, H.; Cai, Q.Y.; Wen, S.; Chi, Y.; Guo, S.; Sheng, G.; Fu, J. Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. Sci. Total Environ. 2010, 408, 3523–3529. [Google Scholar] [CrossRef]
- Napier, F.; Arcy, B.D.; Jefferies, C. A review of vehicle related metals and polycyclic aromatic hydrocarbons in the UK environment. Desalination 2008, 226, 143–150. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kim, Y.P.; Kang, C.H. Characteristics of the ambient particulate PAHs at Seoul, a mega city of Northeast Asia in comparison with the characteristics of a background site. Atmos. Res. 2011, 99, 50–56. [Google Scholar] [CrossRef]
- Dat, N.D.; Chang, M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Weilenmann, M.; Favez, J.Y.; Alvarez, R. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmos. Environ. 2009, 43, 2419–2429. [Google Scholar] [CrossRef]
- Thang, P.Q.; Kim, S.J.; Lee, S.J.; Ye, J.; Seo, Y.K.; Baek, S.O.; Choi, S.D. Seasonal characteristics of particulate polycyclic aromatic hydrocarbons (PAHs) in a petrochemical and oil refinery industrial area of the west coast of South Korea. Atmos. Environ. 2019, 198, 398–406. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, Y.P.; Kang, C.H.; Ghim, Y.S.; Kaneyasu, N. Temporal trend and long-range transport of particulate polycyclic aromatic hydrocarbons at Gosan in the northeast Asia between 2001 and 2004. J. Geophy. Res. 2006, 111, D11303. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.S.; Lee, J.Y.; Kim, Y.P. Impact of polycyclic aromatic hydrocarbons (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan Area, South Korea. Atmos. Environ. 2013, 70, 159–165. [Google Scholar] [CrossRef]
- HYSPLIT. Available online: https://www.ready.noaa.gov/HYSPLIT.php (accessed on 10 December 2019).
- Fujii, M.; Shinohara, N.; Lim, A.; Otake, T.; Kumagai, K.; Yanagisawa, Y. A study on emission of phthalate esters from plastic materials using a passive flux sampler. Atmos. Environ. 2003, 37, 5495–5504. [Google Scholar] [CrossRef]
- 40 CFR § 300.430-Remedial Investigation/Feasibility Study and Selection of Remedy. Available online: https://ecfr.io/Title-40/pt40.30.300#se40.30.300_1430 (accessed on 10 August 2019).
- Kimbrough, D.E.; Cohen, Y.; Winer, A.M.; Creeman, L.; Mabuni, C. A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 1999, 29, 1–46. [Google Scholar] [CrossRef]
Parameter | Spring, 2009 | Summer, 2009 | Autumn, 2009 | Winter, 2010 |
---|---|---|---|---|
Sampling period | 22–29 April | 8–15 July | 15–22 October | 9–16 January |
Temperature (Mean ± SD, °C) | 13.2 ± 3.0 | 24.6 ± 2.1 | 15.5 ± 4.1 | 6.3 ± 2.0 |
Wind speed (Mean ± SD, m/s) | 2.7 ± 1.4 | 3.1 ± 1.7 | 1.8 ± 1.2 | 2.4 ± 1.3 |
Prevailing wind direction | W | SSW | WSW | NNW |
Number of VOC samples | 240 | 240 | 240 | 240 |
Number of Carbonyl samples | 120 | 107 | 120 | 105 |
Number of PAH/phthalate samples | 40 | 40 | 40 | 40 |
Number of HM samples | 40 | 40 | 40 | 40 |
Compound | Industrial Area | Residential Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site A | Site B | Site C | Site D | Site E | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
1,3-Butadiene | 0.01 | 0.01 | 0.16 | 0.39 | 0.01 | 0.07 | 0.01 | 0.04 | 0.01 | 0.01 |
2-Propanol | 0.11 | 0.27 | 0.01 | 0.03 | 0.02 | 0.04 | 0.01 | 0.03 | 0.01 | 0.05 |
Dichloromethane | 0.06 | 0.17 | 0.01 | 0.02 | 0.01 | 0.04 | 0.02 | 0.07 | 0.02 | 0.10 |
Methyl tert-butyl ether | 0.46 | 1.11 | 0.08 | 0.09 | 0.23 | 0.22 | 0.25 | 0.44 | 0.24 | 0.23 |
Vinyl acetate | 0.58 | 0.92 | 0.70 | 0.75 | 0.38 | 0.59 | 0.38 | 0.55 | 0.29 | 0.30 |
Ethyl acetate | 0.74 | 1.34 | 0.10 | 0.18 | 0.30 | 0.40 | 0.25 | 0.28 | 0.22 | 0.36 |
Hexane | 1.51 | 4.30 | 98.2 | 125.33 | 0.80 | 1.50 | 0.85 | 2.28 | 1.33 | 6.86 |
1,2-Dichloroethane | 0.17 | 0.55 | 0.07 | 0.15 | 0.01 | 0.04 | 0.01 | 0.04 | 0.00 | 0.01 |
Benzene | 1.25 | 3.35 | 1.81 | 2.27 | 0.34 | 0.25 | 0.33 | 0.34 | 0.31 | 0.20 |
Carbon tetrachloride | 0.12 | 0.32 | 0.04 | 0.07 | 0.06 | 0.02 | 0.06 | 0.02 | 0.05 | 0.02 |
Cyclohexane | 0.36 | 0.38 | 1.57 | 2.51 | 0.19 | 0.26 | 0.13 | 0.18 | 0.10 | 0.10 |
Trichloroethylene | 0.11 | 0.15 | 0.57 | 1.63 | 0.04 | 0.06 | 0.04 | 0.06 | 0.04 | 0.05 |
Heptane | 0.64 | 1.21 | 0.21 | 0.17 | 0.10 | 0.09 | 0.07 | 0.08 | 0.08 | 0.11 |
Methyl isobutyl ketone | 0.42 | 0.66 | 0.12 | 0.16 | 0.20 | 1.01 | 0.05 | 0.06 | 0.05 | 0.08 |
N,N-Dimethylformamide | 0.11 | 0.32 | 0.43 | 0.80 | 0.02 | 0.06 | 0.02 | 0.08 | 0.01 | 0.08 |
Toluene | 5.25 | 7.96 | 2.14 | 2.03 | 2.00 | 2.96 | 1.33 | 1.03 | 1.44 | 1.72 |
Ethylbenzene | 1.07 | 1.80 | 1.24 | 1.66 | 0.45 | 0.61 | 0.27 | 0.31 | 0.31 | 0.52 |
m,p-Xylenes | 2.29 | 3.71 | 1.83 | 2.45 | 0.96 | 1.61 | 0.50 | 0.67 | 0.53 | 0.96 |
Styrene | 0.06 | 0.10 | 16.6 | 39.02 | 0.07 | 0.18 | 0.05 | 0.18 | 0.03 | 0.07 |
o-Xylene | 0.61 | 0.87 | 0.67 | 0.83 | 0.29 | 0.45 | 0.15 | 0.19 | 0.18 | 0.30 |
4-Ethyltoluene | 0.05 | 0.07 | 0.04 | 0.07 | 0.02 | 0.04 | 0.01 | 0.02 | 0.02 | 0.03 |
1,3,5-Trimethylbenzene | 0.06 | 0.08 | 0.05 | 0.07 | 0.03 | 0.04 | 0.02 | 0.02 | 0.02 | 0.03 |
1,2,4-Trimethylbenzene | 0.22 | 0.28 | 0.19 | 0.28 | 0.12 | 0.15 | 0.07 | 0.09 | 0.08 | 0.12 |
Naphthalene | 0.02 | 0.03 | 0.02 | 0.02 | 0.04 | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 |
Formaldehyde | 2.63 | 1.22 | 4.49 | 3.10 | 3.32 | 2.49 | 3.66 | 3.25 | 3.37 | 3.35 |
Acetaldehyde | 1.41 | 0.52 | 2.79 | 2.14 | 1.60 | 1.16 | 1.88 | 1.75 | 1.49 | 1.43 |
Acetone | 3.85 | 2.57 | 3.50 | 1.48 | 3.08 | 1.56 | 3.18 | 1.43 | 2.95 | 1.30 |
Propionaldehyde | 0.04 | 0.12 | 0.04 | 0.10 | 0.05 | 0.13 | 0.05 | 0.14 | 0.03 | 0.10 |
2-Butanone | 3.08 | 4.49 | 1.50 | 1.42 | 1.29 | 1.29 | 1.31 | 1.27 | 1.13 | 1.28 |
Compound | Industrial Area | Residential Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site A | Site B | Site C | Site D | Site E | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Naphthalene | 0.30 | 0.19 | 0.26 | 0.17 | 0.23 | 0.15 | 0.26 | 0.18 | 0.45 | 0.38 |
Biphenyl | 0.13 | 0.08 | 0.12 | 0.07 | 0.09 | 0.06 | 0.10 | 0.08 | 0.15 | 0.16 |
Acenaphthylene | 0.04 | 0.07 | 0.03 | 0.05 | 0.03 | 0.05 | 0.04 | 0.06 | 0.08 | 0.10 |
Acenaphthene | 0.09 | 0.10 | 0.05 | 0.07 | 0.06 | 0.07 | 0.07 | 0.09 | 0.08 | 0.09 |
Fluorene | 0.17 | 0.20 | 0.12 | 0.13 | 0.08 | 0.09 | 0.09 | 0.10 | 0.17 | 0.22 |
Phenanthrene | 0.62 | 0.66 | 0.49 | 0.46 | 0.50 | 0.56 | 0.56 | 0.55 | 0.88 | 0.84 |
Anthracene | 0.06 | 0.08 | 0.04 | 0.04 | 0.03 | 0.04 | 0.05 | 0.06 | 0.11 | 0.13 |
Fluoranthene | 0.83 | 0.95 | 0.67 | 0.58 | 0.74 | 0.71 | 0.84 | 0.72 | 1.14 | 0.98 |
Pyrene | 0.78 | 0.75 | 0.64 | 0.49 | 0.68 | 0.54 | 0.76 | 0.61 | 1.08 | 0.87 |
Benzo[c]phenanthrene | 0.08 | 0.09 | 0.07 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.10 | 0.09 |
BghiF (a) + CcdP (b) | 0.50 | 0.36 | 0.37 | 0.31 | 0.39 | 0.27 | 0.36 | 0.28 | 0.51 | 0.35 |
Benzo[a]anthracene | 0.34 | 0.24 | 0.28 | 0.25 | 0.29 | 0.22 | 0.28 | 0.23 | 0.45 | 0.35 |
Triphenylene | 0.17 | 0.12 | 0.16 | 0.12 | 0.13 | 0.08 | 0.13 | 0.09 | 0.15 | 0.10 |
Chrysene | 0.48 | 0.37 | 0.47 | 0.40 | 0.45 | 0.33 | 0.44 | 0.35 | 0.57 | 0.44 |
Benzo[b+j]fluoranthene | 0.74 | 0.48 | 0.74 | 0.63 | 0.72 | 0.45 | 0.68 | 0.48 | 0.86 | 0.62 |
Benzo[k]fluoranthene | 0.18 | 0.15 | 0.18 | 0.19 | 0.17 | 0.14 | 0.16 | 0.15 | 0.20 | 0.18 |
Benzo[a]fluoranthene | 0.09 | 0.08 | 0.07 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 | 0.13 | 0.13 |
Benzo[e]pyrene | 0.38 | 0.24 | 0.35 | 0.31 | 0.34 | 0.22 | 0.31 | 0.24 | 0.38 | 0.31 |
Benzo[a]pyrene | 0.32 | 0.25 | 0.29 | 0.31 | 0.31 | 0.27 | 0.29 | 0.27 | 0.42 | 0.40 |
Perylene | 0.04 | 0.05 | 0.04 | 0.06 | 0.05 | 0.05 | 0.04 | 0.05 | 0.06 | 0.08 |
Indeno[1,2,3-cd]pyrene | 0.30 | 0.20 | 0.27 | 0.28 | 0.27 | 0.21 | 0.23 | 0.20 | 0.29 | 0.28 |
Dibenz[a,h+a,c]anthracene | 0.05 | 0.07 | 0.05 | 0.07 | 0.05 | 0.06 | 0.04 | 0.06 | 0.05 | 0.07 |
Benzo[g,h,i]perylene | 0.65 | 0.42 | 0.46 | 0.43 | 0.44 | 0.31 | 0.38 | 0.32 | 0.48 | 0.44 |
Anthanthrene | 0.08 | 0.12 | 0.06 | 0.09 | 0.06 | 0.09 | 0.06 | 0.08 | 0.09 | 0.13 |
Dibenzo[b,k]fluoranthene | 0.04 | 0.07 | 0.04 | 0.07 | 0.04 | 0.05 | 0.03 | 0.06 | 0.03 | 0.06 |
Dibenzo[a,h]pyrene | 0.04 | 0.07 | 0.04 | 0.07 | 0.02 | 0.05 | 0.02 | 0.05 | 0.02 | 0.06 |
Coronene | 0.33 | 0.21 | 0.18 | 0.20 | 0.15 | 0.15 | 0.12 | 0.13 | 0.15 | 0.18 |
Dimethyl phthalate | 0.40 | 0.65 | 0.28 | 0.62 | 0.36 | 0.70 | 0.38 | 0.69 | 0.44 | 0.72 |
Diethyl phthalate | 4.74 | 3.08 | 4.17 | 2.72 | 7.95 | 3.65 | 9.60 | 6.15 | 14.34 | 10.06 |
Dibutyl phthalate | 16.67 | 13.78 | 18.62 | 14.73 | 29.87 | 23.71 | 18.05 | 12.37 | 25.26 | 16.84 |
Butyl benzyl phthalate | 0.33 | 0.44 | 0.28 | 0.27 | 0.62 | 0.57 | 0.45 | 0.48 | 3.15 | 2.22 |
Di(2-ethylhexyl)phthalate | 71.27 | 62.03 | 46.16 | 24.97 | 109.27 | 69.18 | 53.02 | 33.02 | 79.77 | 52.14 |
Dioctyl phthalate | 0.47 | 0.68 | 0.12 | 0.16 | 0.09 | 0.11 | 0.14 | 0.21 | 0.16 | 0.24 |
As | 83.30 | 135.5 | 10.21 | 14.6 | 4.39 | 7.14 | 4.52 | 8.32 | 4.31 | 9.12 |
Cd | 15.52 | 14.25 | 3.15 | 3.67 | 1.54 | 1.78 | 1.64 | 2.10 | 1.43 | 1.98 |
Co | 2.06 | 1.10 | 2.28 | 1.64 | 1.12 | 1.20 | 1.32 | 1.25 | 1.22 | 1.23 |
Cr(VI) | 0.34 | 0.19 | 1.40 | 1.35 | 0.27 | 0.37 | 0.20 | 0.12 | 0.16 | 0.13 |
Mn | 153.82 | 96.92 | 185.33 | 170.34 | 53.50 | 30.92 | 50.74 | 37.41 | 49.53 | 31.12 |
Ni | 39.34 | 47.21 | 41.78 | 60.31 | 6.45 | 4.03 | 6.01 | 4.37 | 5.56 | 3.68 |
Pb | 553.89 | 351.62 | 81.28 | 65.22 | 42.38 | 38.92 | 47.94 | 64.81 | 33.48 | 30.55 |
Se | 61.22 | 90.40 | 54.78 | 71.20 | 4.42 | 12.80 | 7.63 | 18.04 | 2.42 | 7.61 |
SPM (μg/m3) | 142.40 | 47.04 | 108.52 | 42.91 | 102.93 | 24.40 | 108.03 | 38.64 | 108.03 | 37.11 |
HAP Subgroup | Season | n | Industrial Area | Nonindustrial Area | |||
---|---|---|---|---|---|---|---|
Site A | Site B | Site C | Site D | Site E | |||
∑66 VOCs (ppb) | Spring | 240 | 10.46 | 87.46 | 4.09 | 5.71 | 8.03 |
Summer | 240 | 30.70 | 288.84 | 9.28 | 6.56 | 5.84 | |
Autumn | 240 | 16.24 | 118.04 | 5.32 | 4.73 | 5.06 | |
Winter | 240 | 9.29 | 14.20 | 8.28 | 3.01 | 3.11 | |
∑13Carbonyls (ppb) | Spring | 120 | 9.29 | 10.92 | 8.72 | 10.06 | 8.90 |
Summer | 107 | 19.00 | 16.79 | 14.28 | 15.73 | 14.42 | |
Autumn | 120 | 10.22 | 13.19 | 9.48 | 8.88 | 7.60 | |
Winter | 105 | 7.68 | 11.05 | 7.20 | 8.79 | 7.27 | |
∑36PAHs (ng/m3) | Spring | 40 | 4.14 | 4.00 | 4.16 | 3.60 | 5.10 |
Summer | 40 | 3.62 | 1.21 | 1.68 | 1.09 | 1.54 | |
Autumn | 40 | 12.32 | 12.02 | 8.46 | 10.38 | 13.51 | |
Winter | 40 | 12.11 | 9.60 | 11.99 | 11.38 | 16.99 | |
∑6Phthalates (ng/m3) | Spring | 40 | 43.91 | 60.08 | 123.24 | 69.89 | 86.19 |
Summer | 40 | 169.57 | 82.21 | 286.15 | 110.73 | 203.01 | |
Autumn | 40 | 192.75 | 103.82 | 116.91 | 109.42 | 145.36 | |
Winter | 40 | 38.82 | 32.40 | 66.35 | 36.54 | 57.95 | |
∑8HMs (ng/m3) | Spring | 40 | 796.74 | 398.27 | 113.96 | 85.25 | 87.63 |
Summer | 40 | 1208.53 | 308.81 | 117.96 | 121.67 | 72.58 | |
Autumn | 40 | 777.47 | 528.35 | 126.13 | 157.09 | 139.92 | |
Winter | 40 | 671.49 | 123.24 | 84.34 | 92.57 | 84.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, K.-M.; Kim, M.-J.; Seo, Y.-K.; Kang, B.-W.; Kim, J.-H.; Baek, S.-O. Spatiotemporal Variations and Health Implications of Hazardous Air Pollutants in Ulsan, a Multi-Industrial City in Korea. Atmosphere 2020, 11, 547. https://doi.org/10.3390/atmos11050547
Baek K-M, Kim M-J, Seo Y-K, Kang B-W, Kim J-H, Baek S-O. Spatiotemporal Variations and Health Implications of Hazardous Air Pollutants in Ulsan, a Multi-Industrial City in Korea. Atmosphere. 2020; 11(5):547. https://doi.org/10.3390/atmos11050547
Chicago/Turabian StyleBaek, Kyung-Min, Min-Ji Kim, Young-Kyo Seo, Byung-Wook Kang, Jong-Ho Kim, and Sung-Ok Baek. 2020. "Spatiotemporal Variations and Health Implications of Hazardous Air Pollutants in Ulsan, a Multi-Industrial City in Korea" Atmosphere 11, no. 5: 547. https://doi.org/10.3390/atmos11050547
APA StyleBaek, K. -M., Kim, M. -J., Seo, Y. -K., Kang, B. -W., Kim, J. -H., & Baek, S. -O. (2020). Spatiotemporal Variations and Health Implications of Hazardous Air Pollutants in Ulsan, a Multi-Industrial City in Korea. Atmosphere, 11(5), 547. https://doi.org/10.3390/atmos11050547