Addressing Climate Change Impacts on Agriculture: Adaptation Measures For Six Crops in Cyprus
Abstract
:1. Introduction
2. Methodology
2.1. Identification of Adaptation Measures
2.2. Evaluation of the Identified Adaptation Measures
3. Results
3.1. Score of the Identified Measures
3.2. The Recommended Adaptation Measures
4. Discussion
4.1. Irrigation Adaptation To Climate Change Impacts
4.2. Measures Related To Cultural Practices
4.3. Measures for Enhancing Plant Health
4.4. Measures for Upgrading External Support
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- ADAPT2CLIMA. Future Projections on Climatic Indices with Particular Relevance to Agriculture for the Three Islands (Coarse Resolution) and for Each Agricultural Pilot Area (Fine Resolution). Available online: http://adapt2clima.eu/uploads/2017/ADAPT2CLIMA_DEL_C.3_Final_3.pdf. (accessed on 7 April 2020).
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 7 April 2020).
- Gregoriou, C.; Gregoriou, S.; Onoufriou, N. Review of Cultural Practices, Seed Production, and Evaluation of Varieties and Clones of Potatoes for the Period 1965–1994; Agricultural Research Institute, Ministry of Agriculture, Natural Resources: Nicosia, Cyprus, 1997. [Google Scholar]
- Banilas, G.; Minas, J.; Gregoriou, C.; Demoliou, C.; Kourti, A.; Hatzopoulos, P. Genetic diversity among accessions of an ancient olive variety of Cyprus. Genome 2003, 46, 370–376. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Leolini, L.; Bregaglio, S.; Moriondo, M.; Ramos, M.; Bindi, M.; Ginaldi, F. A model library to simulate grapevine growth and development: Software implementation, sensitivity analysis and field level application. Eur. J. Agron. 2018, 99, 92–105. [Google Scholar] [CrossRef]
- Moriondo, M.; Leolini, L.; Brilli, L.; Dibari, C.; Tognetti, R.; Giovannelli, A.; Rapi, B.; Battista, P.; Caruso, G.; Gucci, R. A simple model simulating development and growth of an olive grove. Eur. J. Agron. 2019, 105, 129–145. [Google Scholar] [CrossRef]
- ADAPT2CLIMA. Report on the Estimation of Future Climate Change Vulnerability on the Agricultural Sectors of Cyprus, Crete and Sicily (Including Relative Database). Available online: http://adapt2clima.eu/uploads/2017/adapt2clima_Deliverable_C.4.2_final.pdf (accessed on 7 April 2020).
- Richards, R.; Hunt, J.; Kirkegaard, J.; Passioura, J. Yield improvement and adaptation of wheat to water-limited environments in Australia—A case study. Crop. Pasture. Sci. 2014, 65, 676–689. [Google Scholar] [CrossRef]
- Delgado, J.A.; Groffman, P.M.; Nearing, M.A.; Goddard, T.; Reicosky, D.; Lal, R.; Kitchen, N.R.; Rice, C.W.; Towery, D.; Salon, P. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 118A–129A. [Google Scholar] [CrossRef] [Green Version]
- Piggin, C.; Haddad, A.; Khalil, Y.; Loss, S.; Pala, M. Effects of tillage and time of sowing on bread wheat, chickpea, barley and lentil grown in rotation in rainfed systems in Syria. Field Crops Res. 2015, 173, 57–67. [Google Scholar] [CrossRef]
- Overview of the worldwide spread of conservation agriculture. Available online: http://journals.openedition.org/factsreports/3966 (accessed on 7 April 2020).
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González-Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crops Res. 2012, 132, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- World Bank/CIAT/CATIE. Climate-Smart Agriculture in Sinaloa, Mexico. Available online: https://assets.publishing.service.gov.uk/media/57a089dee5274a27b20002d9/CSA-in-Sinaloa-Mexico.pdf (accessed on 16 July 2016).
- Schafleitner, R.; Ramirez, J.; Jarvis, A.; Evers, D.; Gutierrez, R.; Scurrah, M. Adaptation of the Potato Crop to Changing Climates; Wiley Online Library: West Sussex, UK, 2011; pp. 287–297. [Google Scholar]
- Chaves, M.M.; Santos, T.P.; Souza, C.d.; Ortuño, M.; Rodrigues, M.; Lopes, C.; Maroco, J.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- Romero, P.; Martinez-Cutillas, A. The effects of partial root-zone irrigation and regulated deficit irrigation on the vegetative and reproductive development of field-grown Monastrell grapevines. Irrig. Sci. 2012, 30, 377–396. [Google Scholar] [CrossRef]
- Tognetti, R.; d’Andria, R.; Morelli, G.; Alvino, A. The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L. Plant Soil 2005, 273, 139–155. [Google Scholar] [CrossRef]
- Tognetti, R.; d’Andria, R.; Lavini, A.; Morelli, G. The effect of deficit irrigation on crop yield and vegetative development of Olea europaea L.(cvs. Frantoio and Leccino). Eur. J. Agron. 2006, 25, 356–364. [Google Scholar] [CrossRef]
- Lavee, S.; Hanoch, E.; Wodner, M.; Abramowitch, H. The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel. Sci. Hortic. 2007, 112, 156–163. [Google Scholar] [CrossRef]
- García, F.M.; Sánchez, E.J.G.; Castro-García, S.; Fernández, R.M.O. Improvement of soil carbon sink by cover crops in olive orchards under semiarid conditions. Influence of the type of soil and weed. Span. J. Agric. Res. 2013, 335–346. [Google Scholar] [CrossRef]
- Rodríguez-Entrena, M.; Arriaza, M. Adoption of conservation agriculture in olive groves: Evidences from southern Spain. Land Use Policy 2013, 34, 294–300. [Google Scholar] [CrossRef]
- Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy. Int. J. Biometeorol. 2008, 52, 755. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Koundouras, S.; Tsialtas, I.T.; Zioziou, E.; Nikolaou, N. Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agric. Ecosyst. Environ. 2008, 128, 86–96. [Google Scholar] [CrossRef]
- Webb, L.; Watt, A.; Hill, T.; Whiting, J.; Wigg, F.; Dunn, G.; Needs, S.; Barlow, E. Extreme Heat: Managing Grapevine Response; GWRDC and University of Melbourne: Melbourne, Australia, 2009. [Google Scholar]
- Greer, D.H.; Weedon, M.M. Does the hydrocooling of Vitis vinifera cv. Semillon vines protect the vegetative and reproductive growth processes and vine performance against high summer temperatures? Funct. Plant Biol. 2014, 41, 620–633. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Schultz, H. Effect of sprinkler cooling of grapevines on fruit growth and composition. Am. J. Enol. Vitic. 1973, 24, 17–26. [Google Scholar]
- Soar, C.J.; Speirs, J.; Maffei, S.; Penrose, A.; McCarthy, M.G.; Loveys, B. Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: Apparent links with ABA physiology and gene expression in leaf tissue. Aust. J. Grape Wine Res. 2006, 12, 2–12. [Google Scholar] [CrossRef]
- Judit, G.; Gábor, Z.; Ádám, D.; Tamas, V.; Gyorgy, B. Comparison of three soil management methods in the Tokaj wine region. Mitt Klosterneubg. 2011, 61, 187–195. [Google Scholar]
- Wheaton, A.; McKenzie, B.; Tisdall, J.M. Management to increase the depth of soft soil improves soil conditions and grapevine performance in an irrigated vineyard. Soil Tillage Res. 2008, 98, 68–80. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M.; Weston, C. Reductions in biomass accumulation, photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera ‘Semillon’grapevines from heat stress with shade covering. AoB Plants 2011, 2011, plr023. [Google Scholar] [CrossRef]
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. Hortic. Rev. 2005, 31, 1–44. [Google Scholar]
- Glenn, D.M.; Cooley, N.; Walker, R.; Clingeleffer, P.; Shellie, K. Impact of kaolin particle film and water deficit on wine grape water use efficiency and plant water relations. HortScience 2010, 45, 1178–1187. [Google Scholar] [CrossRef]
- Connor, D.J. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 2005, 56, 1181–1189. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Barzman, M.; Booij, K.; Boonekamp, P.; Desneux, N.; Huber, L.; Kudsk, P.; Langrell, S.R.; Ratnadass, A.; Ricci, P. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 2015, 35, 443–459. [Google Scholar] [CrossRef]
- Paredes, D.; Cayuela, L.; Gurr, G.M.; Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests? PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredes, D.; Cayuela, L.; Gurr, G.M.; Campos, M. Effect of non-crop vegetation types on conservation biological control of pests in olive groves. Peer J. 2013, 1, e116. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, D. Agricultural Practices and Technologies to Enhance Food Security, Resilience and Productivity in a Sustainable Manner: Messages to the SBSTA 44 Agriculture Workshops; CCAFs, Working Paper no 146; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2016. [Google Scholar]
- Alegre, S.; Girona, J.; Marsal, J.; Arbones, A.; Mata, M.; Montagut, D.; Teixido, F.; Motilva, M.J.; Romero, M.P. Regulated deficit irrigation in olive trees. In Proceedings of the III International Symposium on Olive Growing, Chania, Greece, 1 April 1999; Volume 474, pp. 373–376. [Google Scholar]
- Jat, M.; Saharawat, Y.; Gupta, R. Conservation agriculture in cereal systems of South Asia: Nutrient management perspectives. Karnataka J. Agric. Sci. 2011, 24, 100–105. [Google Scholar]
- Levy, D.; Veilleux, R.E. Adaptation of potato to high temperatures and salinity—A review. Am.J. Potato Res. 2007, 84, 487–506. [Google Scholar] [CrossRef]
- ADAPT2CLIMA. Review and Assessment of National and European Legislation, Guidelines, Plans and Best Available Techniques Relative to Agriculture. Available online: http://adapt2clima.eu/uploads/2017/Del_C2_1.pdf (accessed on 7 April 2020).
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophys. 2013, 27, 463–477. [Google Scholar] [CrossRef]
- Daniel, J. Sampling Essentials: Practical Guidelines for Making Sampling Choices; Sage Publications: Thousand Oaks, CA, USA, 2012. [Google Scholar]
- Field, C.B. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Kahil, M.T.; Connor, J.D.; Albiac, J. Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecol. Econ. 2015, 120, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Carey, J.M.; Zilberman, D. A model of investment under uncertainty: Modern irrigation technology and emerging markets in water. Am. J. Agric. Econ. 2002, 84, 171–183. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, C.M. Ecogeography and breeding potential of the wild Peruvian tuber-bearing species of Solanum. Econ. Bot. 1998, 52, 3–6. [Google Scholar] [CrossRef]
- Schafleitner, R.; Gutierrez, R.; Espino, R.; Gaudin, A.; Pérez, J.; Martínez, M.; Domínguez, A.; Tincopa, L.; Alvarado, C.; Numberto, G. Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Res. 2007, 50, 71–85. [Google Scholar] [CrossRef]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Chakraborty, S. Migrate or evolve: Options for plant pathogens under climate change. Glob. Chang. Biol. 2013, 19, 1985–2000. [Google Scholar] [CrossRef]
- Loss, S.; Haddad, A.; Khalil, Y.; Alrijabo, A.; Feindel, D.; Piggin, C. Evolution and adoption of conservation agriculture in the middle east. In Conservation Agriculture; Springer: Cham, Switzerland, 2015; pp. 197–224. [Google Scholar]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method–from the concept of agriculture sustainability to case studies on farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Markou, M.; Stylianou, A.; Giannakopoulou, M.; Adamides, G. Identifying business-to-business unfair trading practices in the food supply chain: The case of Cyprus. New Medit 2020, 1, 19–34. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Lamanna, C.; Chesterman, S.; Bell, P.; Arslan, A.; Richards, M.; Rioux, J.; Akinleye, A.; Champalle, C.; Cheng, Z. The Scientific Basis of Climate-Smart Agriculture: A Systematic Review Protocol; Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2016. [Google Scholar]
Adaptation Measures | General | Cereals | Vegetables | Perrenial Crops |
---|---|---|---|---|
Drought stress | ||||
Use of green manure for vegetables | P, T | |||
Earlier planting of potatoes | P | |||
Breeding early maturing potato varieties for shorter rainy seasons | P | |||
Applying deficit irrigation strategies (e.g., regulated deficit irrigation) in olive groves | O | |||
Applying conservation tillage combined with vegetation cover in row-middle floors during winter and mulching it at the beginning of spring in olive groves | O | |||
Applying deficit irrigation strategies (e.g., regulated deficit irrigation, partial root drying or sustained deficit irrigation) in vineyards | G | |||
Applying the principles of conservation agriculture in rainfed cereals | B, W | |||
Applying zero tillage and early sowing in wheat/barley crops | B, W | |||
Strengthen on-farm water harvesting | X | |||
Applying supplementary irrigation at critical periods of the cropping season in rainfed crops | B, W | O, G | ||
Use of efficient irrigation systems and schedule | X | |||
Development of water markets and setting clear water use properties | X | |||
Heat stress | ||||
Applying organic mulching for olive groves | O | |||
Enhanced low skirts (crotches) in young olive trees | O | |||
Applying straw mulch in the inter-row of vineyards | G | |||
Artificial shading of vineyards | G | |||
Use of kaolin clay as sunscreen for vineyards | G | |||
Relocating vineyards to higher elevations or higher latitude that are presently cooler | G | |||
Applying evaporative cooling of grapevines by overhead microsprinklers | G | |||
Decreasing plant health | ||||
Applying principles of Integrated Pest Management (IPM) | X | |||
Crop rotations in the row-middle floors of the irrigated olive groves | O | |||
Strengthen increased diversity of cultivars or crops (diversification) | X | |||
Development of a data base with long-term monitoring data of population dynamics of main pest and disease of study crops at project areas | X | |||
Development of pest risk analysis model for the project areas | X | |||
Development of internet-based platforms for the main pathosystems in the project areas | X | |||
Enhanced global networking of researchers and stakeholders at all levels across plant protection spectrum | X | |||
Extreme weather events | ||||
Tomato cultivation in greenhouse | T | |||
Development/improvement of early warning systems | X | |||
Reduced crop productivity | ||||
Intercropping with legumes | B, W | P | ||
Total impact | ||||
Use of local cereal landraces and/or local vegetable and tree varieties | X | |||
Breeding drought/heat resistant/tolerant crop varieties | X | |||
Improvement of agricultural advisory and external services for building resilience to climate change | X | |||
Strengthen local institutional support for promotion of adaptation measures | X |
Recommended Adaptation Measure | General | Crop-specific | N | Total Score (%) (Mean ± SD) |
---|---|---|---|---|
Drought stress | ||||
Use of efficient irrigation systems and schedules | X | 54 | 69 ± 10.5 | |
Strengthen on-farm water harvesting | X | 55 | 60 ± 14.4 | |
Applying supplementary irrigation at critical periods of the cropping season in rainfed crops | X | 55 | 62 ± 10.7 | |
Applying deficit irrigation strategies (e.g., regulated deficit irrigation) in olive groves | X | 52 | 64 ± 13 | |
Decreasing plant health | ||||
Applying principles of Integrated Pest Management (IPM) | X | 56 | 65 ± 12.9 | |
Strengthen increased diversity of cultivars or crops (diversification) | X | 54 | 60 ± 14.6 | |
Extreme weather events | ||||
Development/improvement of early warning systems | X | 55 | 64 ± 12.2 | |
Reduced crop productivity | ||||
Intercropping with legumes | X | 53 | 64 ± 13.8 | |
Total impact | ||||
Improvement of agricultural advisory and external services for building resilience to climate change | X | 55 | 68 ± 8.8 | |
Strengthen local institutional support for promotion of adaptation measures | X | 54 | 66 ± 10.1 | |
Breeding drought/heat resistant/tolerant varieties | X | 55 | 61 ± 15.5 | |
Use of local cereal landraces and/or local vegetable and tree varieties | X | 54 | 63 ± 16.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markou, M.; Moraiti, C.A.; Stylianou, A.; Papadavid, G. Addressing Climate Change Impacts on Agriculture: Adaptation Measures For Six Crops in Cyprus. Atmosphere 2020, 11, 483. https://doi.org/10.3390/atmos11050483
Markou M, Moraiti CA, Stylianou A, Papadavid G. Addressing Climate Change Impacts on Agriculture: Adaptation Measures For Six Crops in Cyprus. Atmosphere. 2020; 11(5):483. https://doi.org/10.3390/atmos11050483
Chicago/Turabian StyleMarkou, Marinos, Cleopatra A. Moraiti, Andreas Stylianou, and George Papadavid. 2020. "Addressing Climate Change Impacts on Agriculture: Adaptation Measures For Six Crops in Cyprus" Atmosphere 11, no. 5: 483. https://doi.org/10.3390/atmos11050483
APA StyleMarkou, M., Moraiti, C. A., Stylianou, A., & Papadavid, G. (2020). Addressing Climate Change Impacts on Agriculture: Adaptation Measures For Six Crops in Cyprus. Atmosphere, 11(5), 483. https://doi.org/10.3390/atmos11050483