Evaluating the Sensitivity of Growing Degree Days as an Agro-Climatic Indicator of the Climate Change Impact: A Case Study of the Russian Far East
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Study Area and Data
3.2. Method
- >0 °C:
- onset of ‘warm season’;
- >5 °C:
- commencement of period of active crop growth;
- >10 °C:
- beginning of period for the cold-resistant crop development;
- >15 °C:
- conditions suited to heat-reliant plants.
4. Results
Mapped Results
5. Discussion
6. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, J.B.; Schellnhuber, H.-J.; Mirza, M.M.Q. Vulnerability to climate change and reasons for concern: A synthesis. In Climate Change 2001: Impacts, Adaptation and Vulnerability. IPCC Working Group II; McCarthy, J.J., Canziani, O., Leary, N.A., Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 914–967. [Google Scholar]
- Robinson, J.; Bradley, M.; Busby, P.; Connor, D.; Murray, A.; Sampson, B.; Soper, W. Climate change and sustainable development: Realizing the opportunity. AMBIO J. Human Environ. 2006, 35, 2–9. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 10 March 2020).
- Boswell, M.R.; Greve, A.I.; Seale, T.L. Climate Change Vulnerability Assessment. In Climate Action Planning; Island Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. Available online: https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf (accessed on 10 March 2020).
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Füssel, H.-M. Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts; World Bank: Washington, DC, USA, 2010; Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/9193/WDR2010_0004.pdf?sequence=1&isAllowed=y (accessed on 10 March 2020).
- Parry, M.; Carter, T. The Assessment of Effects of Climatic Variations on Agriculture: Aims, Methods and Summary of Results. In The Impact of Climatic Variations on Agriculture; Vol. 1: Assessment in cool temperate and cold regions; Parry, M.L., Carter, T.R., Konijn, N.T., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 11–96. [Google Scholar] [CrossRef]
- Anwar, M.R.; Feng, H.; Macadam, I.; Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Clim. 2013, 113, 225–245. [Google Scholar] [CrossRef]
- Parry, M.L.; Carter, T.R.; Konijn, N.T. Planned Responses in Agricultural Management under a Changing Climate. In The Impact of Climatic Variations on Agriculture; Parry, M.L., Carter, T.R., Konijn, N.T., Eds.; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Parry, M.N. Climate Change and World Agriculture; Earthscan: London, UK, 1990. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, C.R.; Helbig, M.; Matzarakis, A. Hydroclimatic assessment of water resources of low Pacific islands: Evaluating sensitivity to climatic change and variability. Int. J. Clim. 2014, 34, 881–892. [Google Scholar] [CrossRef]
- Bannayan, M.; Paymard, P.; Ashraf, B. Vulnerability of maize production under future climate change: Possible adaptation strategies. J. Sci. Food Agric. 2016, 96, 4465–4474. [Google Scholar] [CrossRef]
- Wall, E.; Smit, B. Climate Change Adaptation in Light of Sustainable Agriculture. J. Sustain. Agric. 2005, 27, 113–123. [Google Scholar] [CrossRef]
- Springmann, M.; Charles, H.; Godfray, J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Rehman, A.; Pisante, M. Sustainable Agriculture and Food Security. In Innovations in Sustainable Agriculture; Farooq, M., Pisante, M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Paloviita, A.; Järvelä, M. Multilevel Governance for Climate Change Adaptation in Food Supply Chains. In Sustainable Solutions for Food Security; Sarkar, A., Sensarma, S., vanLoon, G., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Praveen, B.; Sharma, P. A review of literature on climate change and its impacts on agriculture productivity. J. Public Aff. 2019, e1960. [Google Scholar] [CrossRef]
- Tian, Z.; Xu, H.; Zhong, H.; Sun, L.; Liu, J. Agricultural Adaptation to Climate Change in China. In Adaptation to Climate Change in Agriculture; Iizumi, T., Hirata, R., Matsuda, R., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Pandey, D. Agricultural Sustainability and Climate Change Nexus. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Singh, P., Singh, R., Srivastava, V., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Barnett, J. Adapting to Climate Change in Pacific Island Countries: The Problem of Uncertainty. World Dev. 2001, 29, 977–993. [Google Scholar] [CrossRef] [Green Version]
- Smit, B.; Pilifosova, O. Adaptation to climate change in the context of sustainable development and equity. In Climate Change 2001: Impacts, Adaptation and Vulnerability. IPCC Working Group II; McCarthy, J.J., Canziani, O., Leary, N.A., Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 877–912. [Google Scholar]
- Belyaeva, M.; Bokusheva, R. Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach. Clim. Chang. 2018, 149, 205. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, C.R.; Fowler, A.M. Identifying sensitivity to climatic change at the regional scale: The New Zealand example. In Proceedings of the 15th Conference New Zealand Geographical Society; New Zealand Geographical Society Conference Series No 15; Welch, R., Ed.; New Zealand Geographical Society: Dunedin, New Zealand, 1989; pp. 254–261. [Google Scholar]
- Zhou, Y.; Li, N.; Dong, G.; Wu, W. Impact assessment of recent climate change on rice yields in the Heilongjiang Reclamation Area of north-east China. J. Sci. Food Agric. 2013, 93, 2698–2706. [Google Scholar] [CrossRef]
- Anderton, S.; Latron, J.; Gallart, F. Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrol. Process. 2002, 16, 333–353. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res. 2011, 47, W02544. [Google Scholar] [CrossRef]
- Sreedevi, S.; Eldho, T.I. A two-stage sensitivity analysis for parameter identification and calibration of a physically-based distributed model in a river basin. Hydrol. Sci. J. 2019. [Google Scholar] [CrossRef]
- McCuen, R.H. A sensitivity and error analysis of procedures used for estimating evaporation. JAWRA J. Am. Water Resour. Assoc. 1974, 10, 486–498. [Google Scholar] [CrossRef]
- Saxton, K.E. Sensitivity analysis of the combination evapotranspiration equation. Agric. Meteorol. 1975, 15, 343–353. [Google Scholar] [CrossRef]
- Gong, L.; Xu, C.-Y.; Chen, D.; Halldin, S.; Chen, Y.D. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Gao, Z.; He, J.; Dong, K.; Bian, X.; Li, X. Sensitivity study of reference crop evapotranspiration during growing season in the west Liao River basin, China. Theor. Appl. Clim. 2016, 124, 865–881. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Bannayan, M. Quantitative Trend, Sensitivity and Contribution Analyses of Reference Evapotranspiration in some Arid Environments under Climate Change. Water Resour. Manag. 2017, 31, 2207–2224. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Matzarakis, A. Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theor. Appl. Clim. 2017, 128, 745–759. [Google Scholar] [CrossRef]
- Ebi, K.L.; Hasegawa, T.; Hayes, K.; Monaghan, A.; Paz, S.; Berry, P. Health risks of warming of 1.5 °C, 2 °C, and higher, above pre-industrial temperatures. Environ. Res. Lett. 2018, 13, 063007. [Google Scholar] [CrossRef]
- Sirotenko, O.D.; Abashina, H.V.; Pavlova, V.N. Sensitivity of the Russian agriculture to changes in climate, CO2 and tropospheric ozone concentrations and soil fertility. Clim. Chang. 1997, 36, 217. [Google Scholar] [CrossRef]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor. Appl. Clim. 2015, 122, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Wu, W.; Ge, Q. CERES-Maize model based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China. J. Sci. Food Agric. 2015, 95, 2838–2849. [Google Scholar] [CrossRef]
- Graczyk, D.; Kundzewicz, Z.W. Changes of temperature-related agroclimatic indices in Poland. Theor. Appl. Clim. 2016, 124, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Russelle, M.P.; Wilhelm, W.W.; Olson, R.A.; Power, J.F. Growth analysis based on degree days. Crop. Sci. 1984, 24, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.; Bootsma, A. Analyses of growing degree-days for agriculture in Atlantic Canada. Clim. Res. 1993, 3, 169–176. [Google Scholar] [CrossRef]
- Førland, E.J.; Skaugen, T.E.; Benestad, R.E.; Hanssen-Bauer, I.; Tveito, O.E. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arct. Antarct. Alp. Res. 2004, 36, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Gavilán, R.G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int. J. Biometeorol. 2005, 50, 111–120. [Google Scholar] [CrossRef]
- Grigorieva, E.A.; Matzarakis, A.; de Freitas, C.R. Analysis of the growing degree days as a climate impact indicator in a region with extreme annual air temperature amplitude. Clim. Res. 2010, 42, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Deng, H.; Qiu, X.; Wang, P.; Yang, F. Determining the impact of key climatic factors on geographic distribution of wild Akebia trifoliate. Ecol. Indic. 2020, 112, 106093. [Google Scholar] [CrossRef]
- Wang, J.Y. A critique of the heat-unit approach to plant response studies. Ecology 1960, 41, 785–790. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Chang. Boil. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Bootsma, A. Long term (100 year) climatic trends for agriculture at selected locations in Canada. Clim. Chang. 1994, 26, 65–88. [Google Scholar] [CrossRef]
- Bootsma, A.; Anderson, D.; Gameda, S. Potential impacts of climate change on agroclimatic indices in southern regions of Ontario and Quebec. In Technical Bulletin ECORC Contribution; Eastern Cereal and Oilseed Research Centre: Ottawa, ON, Canada, 2004; No.03–284. [Google Scholar]
- Gordeev, A.V.; Kleschenko, A.D.; Chernyakov, B.A.; Sirotenko, O.D. Bioclimatical Potential of Russia: Theory and Practice; Association of Scientific Publications KMK: Moscow, Russia, 2006; p. 512. (In Russian) [Google Scholar]
- Hall, A.; Jones, G.V. Effect of potential atmospheric warming on temperature-based indices describing Australian winegrape growing conditions. Aust. J. Grape Wine Res. 2009, 15, 97–119. [Google Scholar] [CrossRef]
- Cabré, F.; Nuñez, M. Impacts of climate change on viticulture in Argentina. Reg. Environ. Chang. 2020, 20, 12. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, M.M.; Horie, T.; Seino, H.; Tsujii, H.; Uchijima, T.; Uchijima, Z. The Effects of Climatic Variations on Agriculture in Japan. In The Impact of Climatic Variations on Agriculture; Vol. 1. Assessment in Cool Temperate and Cold Regions; Parry, M.L., Carter, T.R., Konijn, N.T., Eds.; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1988; pp. 723–868. [Google Scholar]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center: San Jose, Costa Rica, 1967. [Google Scholar]
- Wang, J. Modelling the Distribution of Five Caragana Species in Temperate Northern China. Chin. J. Plant Ecol. 2009, 33, 12–24. [Google Scholar]
- Pitovranov, S.E.; Iakimets, V.; Kiselev, V.I.; Sirotenko, O.D. The effects of climatic variations on agriculture in the subarctic zone of the USSR. In The Impact of Climatic Variations on Agriculture; Vol. 1, Assessments in cool temperate and cold regions; Parry, M.L., Carter, T.R., Konijn, N.T., Eds.; Kluwer: Dordrecht, The Netherlands, 1988; pp. 617–722. [Google Scholar]
- Malheiro, A.C.; Santos, A.S.; Helder, F.; Pinto, J.G. Climate change scenarios applied to viticultural zoning in Europe. Clim. Res. 2010, 43, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Jones, P.D.; Knight, R.W.; Kukla, G.; Plummer, N.; Razuvayev, V.; Gallo, K.P.; Lindesay, J.; Charlson, R.J.; Peterson, T.C. Asymmetric trends of daily maximum and minimum temperature. Bull. Am. Meteorol. Soc. 1993, 74, 1007–1023. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Briffa, K.R. Growing season temperatures over the former Soviet Union. Int. J. Clim. 1995, 15, 943–959. [Google Scholar] [CrossRef]
- Su, L.; Wang, Q.; Bai, Y. An analysis of yearly trends in growing degree days and the relationship between growing degree day values and reference evapotranspiration in Turpan area, China. Theor. Appl. Clim. 2013, 113, 711–742. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.; Barbosa, P. European degree-day climatologies and trends for the period 1951–2011. Int. J. Clim. 2015, 35, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wu, S. Spatial and temporal variability of key bio-temperature indicators on the Qinghai-Tibetan Plateau for the period 1961–2013. Int. J. Clim. 2016, 36, 2083–2092. [Google Scholar] [CrossRef]
- Paparrizos, S.; Matzarakis, A. Present and future responses of growing degree days for Crete Island in Greece. Adv. Sci. Res. 2017, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Variability of growing degree days in Poland in response to ongoing climate changes in Europe. Int. J. Biometeorol. 2017, 61, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennessy, K.J.; Pittock, A.B. Greenhouse warming and threshold temperature events in Victoria, Australia. Int. J. Clim. 1995, 15, 611–612. [Google Scholar] [CrossRef]
- Grigorieva, E.A.; Kogan, R.M. Fire risk characteristic of climate at the Russian Far East. Regist. Probl. 2010, 13, 78–81. (In Russian) [Google Scholar]
- Carter, T.; Konijn, N.; Watts, R. The Choice of First-Order Impact Models. In The Impact of Climatic Variations on Agriculture; Vol. 1: Assessment in cool temperate and cold regions; Parry, M.L., Carter, T.R., Konijn, N.T., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 97–124. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Approaches to the simulation of regional climate change: A review. Rev. Geophys. 1991, 29, 191. [Google Scholar] [CrossRef]
- Lough, J.M.; Wigley, T.M.L.; Palutikof, J.P. Climate and climate impact scenarios for Europe in a warmer world. J. Clim. Appl. Meteorol. 1983, 22, 1673–1684. [Google Scholar] [CrossRef]
- Schlesinger, M.E. Simulating CO2-Induced Climatic Change with Mathematical Models: Capabilities, Limitations and Prospects. III.3-III.139, US DOE 021; US Department of Energy: Washington, DC, USA, 1983.
- Clarke, L.E.; Edmonds, J.A.; Jacoby, H.D.; Pitcher, H.; Reilly, J.M.; Richels, R. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-Report 2.1a of Synthesis and Assessment Product 2.1.; Climate Change Science Program and the Subcommittee on Global Change Research: Washington, DC, USA, 2007.
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, L.; Pan, J.; Xu, Y. Projected Changes in Temperature Extremes in China Using PRECIS. Atmosphere 2017, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.; Wang, F.; Ren, W.; Hao, Z. Climate Change Impacts on Winter Wheat Yield in Northern China. Adv. Meteorol. 2019, 2767018. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wu, W.; Du, M.; Liu, X.; Wang, J.; Bryant, C.R. Modeling Climate Change Impacts on Rice Growth and Yield under Global Warming of 1.5 and 2.0 °C in the Pearl River Delta, China. Atmosphere 2019, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Blasing, T.J.; Solomon, A.M. Response of North American Corn Belt to Climatic Warming; DOE/N88-004; US Department of Energy, Carbon Dioxide Research Division: Washington, DC, USA, 1983.
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Covey, C.; Taylor, K.E.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J. THE WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Cox, P.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Collins, W.; Gier, B.K.; Hall, A.D.; Hoffman, F.; et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 2019, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzarakis, A.; Ivanova, D.; Balafoutis, C.; Makrogiannis, T. Climatology of growing degree days in Greece. Clim. Res. 2007, 34, 233–240. [Google Scholar] [CrossRef]
- Roltsch, W.J.; Zalom, F.G.; Strawn, A.J.; Strand, J.F.; Pitcairn, M.J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 1999, 42, 169–176. [Google Scholar] [CrossRef]
- Blumenthal, C.S.; Batey, I.L.; Bekes, F.; Wrigley, C.W.; Barlow, E.W.R. Gliadin genes contain heat-shock elements: Possible relevance to heat-induced changes in grain quality. J. Cereal Sci. 1990, 11, 185–188. [Google Scholar] [CrossRef]
- Brown, J.; Ferrians, O.J., Jr.; Heginbottom, J.A.; Melnikov, E.S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (1:10000000). IPA and USGS. 1995. Available online: https://pubs.usgs.gov/cp/45/plate-1.pdf (accessed on 8 April 2020).
- Grigorieva, E.A.; de Freitas, C.R. Temporal dynamics of precipitation in an extreme mid-latitude monsoonal climate. Theor. Appl. Clim. 2014, 116, 1–9. [Google Scholar] [CrossRef]
No | Weather Station | WMO Index | Latitude (°N) | Longitude (°E) | Altitude (m) |
---|---|---|---|---|---|
1 | Skovorodino | 30692 | 54°00′ | 123°58′ | 397 |
2 | Dzhalinda | 30695 | 53°28′ | 123°54′ | 266 |
3 | Aldan | 31004 | 58°37′ | 125°02′ | 678 |
4 | Uchur | 31026 | 58°44′ | 130°37′ | 194 |
5 | Yugarenok | 31062 | 59°46′ | 137°40′ | 380 |
6 | Okhotsk | 31088 | 59°22′ | 143°12′ | 5 |
7 | Talon | 31092 | 59°46′ | 148°38′ | 19 |
8 | Kanku | 31102 | 57°39′ | 125°58′ | 1204 |
9 | Toko | 31137 | 56°17′ | 131°08′ | 849 |
10 | Nelkan | 31152 | 57°39′ | 136°08′ | 326 |
11 | Ayan | 31168 | 56°27′ | 138°09′ | 6 |
12 | Bolshoi Shantar | 31174 | 54°50′ | 137°32′ | 9 |
13 | Dzhana | 31235 | 55°20′ | 134°30′ | 318 |
14 | Bomnak | 31253 | 54°49′ | 128°52′ | 365 |
15 | Udskoe | 31285 | 54°30′ | 134°25′ | 62 |
16 | Ekimchan | 31329 | 53°04′ | 132°56′ | 540 |
17 | Litke | 31362 | 53°57′ | 140°20′ | 22 |
18 | Nikolaevsk-on-Amur | 31369 | 53°09′ | 140°42′ | 67 |
19 | Chernyaevo | 31371 | 52°47′ | 126°00′ | 208 |
20 | Norsk | 31388 | 52°21′ | 129°55′ | 207 |
21 | Poliny Osipenko | 31416 | 52°25′ | 136°30′ | 69 |
22 | Dzhaore | 31436 | 52°40′ | 141°17′ | 5 |
23 | Bogorodskoe | 31439 | 52°23′ | 140°28′ | 33 |
24 | Mazanovo | 31443 | 51°38′ | 128°49′ | 161 |
25 | Sophiysky Priisk | 31478 | 52°16′ | 133°59′ | 902 |
26 | Blagoveschensk | 31510 | 50°22′ | 127°31′ | 130 |
27 | Chekunda | 31532 | 50°49′ | 132°10′ | 271 |
28 | Sutur | 31538 | 50°04′ | 132°08′ | 343 |
29 | Nizhnetambovskoe | 31562 | 50°56′ | 138°11′ | 20 |
30 | Konstantinovka | 31586 | 49°37′ | 127°59′ | 117 |
31 | Arkhara | 31594 | 49°29′ | 130°02′ | 133 |
32 | Solekul | 31677 | 49°10′ | 138°03′ | 915 |
33 | Yekaterino-Nickolskoye | 31707 | 47°44′ | 130°58′ | 72 |
34 | Smidovich | 31725 | 48°37′ | 133°50′ | 50 |
35 | Elabuga | 31733 | 48°48′ | 135°52′ | 62 |
36 | Khabarovsk | 31735 | 48°31′ | 135°10′ | 75 |
37 | Sovetskaya Gavan | 31770 | 48°58′ | 140°20′ | 21 |
38 | Lermontovka | 31788 | 47°09′ | 134°20′ | 75 |
39 | Zolotoy Mys | 31829 | 47°19′ | 138°59′ | 27 |
40 | Krasnyi Yar | 31845 | 46°32′ | 135°19′ | 128 |
41 | Dalnerechensk | 31873 | 45°52′ | 133°44′ | 100 |
42 | Melnichnoe | 31895 | 45°27′ | 135°30′ | 331 |
43 | Ternei | 31909 | 45°00′ | 136°36′ | 51 |
44 | Pogranichnyi | 31915 | 44°24′ | 131°23′ | 217 |
45 | Sviyagino | 31931 | 44°48′ | 133°05′ | 99 |
46 | Rudnaya Pristan | 31959 | 44°22′ | 135°51′ | 27 |
47 | Vladivostok | 31960 | 43°07′ | 131°53′ | 187 |
48 | Timiryazevskyi | 31691 | 43°53′ | 131°58′ | 34 |
49 | Posyet | 31969 | 42°39′ | 130°48′ | 41 |
50 | Preobrazhenie | 31989 | 42°54′ | 133°53′ | 44 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorieva, E. Evaluating the Sensitivity of Growing Degree Days as an Agro-Climatic Indicator of the Climate Change Impact: A Case Study of the Russian Far East. Atmosphere 2020, 11, 404. https://doi.org/10.3390/atmos11040404
Grigorieva E. Evaluating the Sensitivity of Growing Degree Days as an Agro-Climatic Indicator of the Climate Change Impact: A Case Study of the Russian Far East. Atmosphere. 2020; 11(4):404. https://doi.org/10.3390/atmos11040404
Chicago/Turabian StyleGrigorieva, Elena. 2020. "Evaluating the Sensitivity of Growing Degree Days as an Agro-Climatic Indicator of the Climate Change Impact: A Case Study of the Russian Far East" Atmosphere 11, no. 4: 404. https://doi.org/10.3390/atmos11040404
APA StyleGrigorieva, E. (2020). Evaluating the Sensitivity of Growing Degree Days as an Agro-Climatic Indicator of the Climate Change Impact: A Case Study of the Russian Far East. Atmosphere, 11(4), 404. https://doi.org/10.3390/atmos11040404