Low Concentration Analysis of Silver Nanoparticles in Consumer Spray Products
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Equipment
2.3. Experiment Procedure
2.4. Analysis for Physical and Chemical Properties
2.4.1. Microscopic Analysis
2.4.2. Mass Spectrometry Analysis
3. Results
3.1. Emitted Airborne Particles
3.2. Sampling and Analytical Techniques
3.2.1. Impinger and SP-ICP-MS Analysis
3.2.2. Nano Sampler and Microscopic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hendren, C.O.; Mesnard, X.; Dröge, J.; Wiesner, M.R. Estimating Production Data for Five Engineered Nanomaterials as a Basis for Exposure Assessment. Environ. Sci. Technol. 2011, 45, 2562–2569. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.L.; Hazelwood, K.J. Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Ann. Occup. Hyg. 2005, 49, 575–585. [Google Scholar] [PubMed] [Green Version]
- Office of the Commissioner, Nanotechnology—FDA’s Approach to Regulation of Nanotechnology Products, U S Food and Drug Administration. Available online: www.fda.gov/scienceresearch/specialtopics/nanotechnology/ucm301114.htm (accessed on 25 September 2019).
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanobiotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanotechnol. 2005, 3, 6. [Google Scholar]
- Foldbjerg, R.; Dang, D.A.; Autrup, H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 2010, 85, 743–750. [Google Scholar] [CrossRef]
- Simon-Deckers, A.; Gouget, B.; Mayne-L’Hermite, M.; Herlin-Boime, N.; Reynaud, C.; Carriere, M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 2008, 253, 137–146. [Google Scholar] [CrossRef]
- Repar, N.; Li, H.; Aguilar, J.S.; Li, Q.Q.; Drobne, D.; Hong, Y.; Drobne, D. Silver nanoparticles induce neurotoxicity in a human embryonic stem cell-derived neuron and astrocyte network. Nanotoxicology 2018, 12, 104–116. [Google Scholar] [CrossRef]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials (Basel) 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [Green Version]
- Trickler, W.J.; Lantz, S.M.; Murdock, R.C.; Schrand, A.M.; Robinson, B.; Newport, G.D.; Schlager, J.J.; Oldenburg, S.J.; Paule, M.G.; Slikker, W.; et al. Silver Nanoparticle Induced Blood-Brain Barrier Inflammation and Increased Permeability in Primary Rat Brain Microvessel Endothelial Cells. Toxicol. Sci. 2010, 118, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Yin, N.; Wen, R.; Liu, W.; Jia, Y.; Hu, L.; Zhou, Q.; Jiang, G. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. NeuroToxicology 2016, 52, 210–221. [Google Scholar] [CrossRef]
- Yin, N.; Liu, Q.; Liu, J.; He, B.; Cui, L.; Li, Z.; Yun, Z.; Qu, G.; Liu, S.; Zhou, Q.; et al. Silver Nanoparticle Exposure Attenuates the Viability of Rat Cerebellum Granule Cells through Apoptosis Coupled to Oxidative Stress. Small 2013, 9, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shao, A.; Zhao, Y.; Wang, Z.; Zhang, C.; Sun, Y.; Deng, J.; Chou, L.L. Neurotoxicity of Silver Nanoparticles in Rat Brain After Intragastric Exposure. J. Nanosci. Nanotechnol. 2015, 15, 4215–4223. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guan, W.; Ren, G.; Yang, Z. The possible mechanism of silver nanoparticle impact on hippocampal synaptic plasticity and spatial cognition in rats. Toxicol. Lett. 2012, 209, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Hu, B.; Yang, R.; Liang, S.; Liang, S.; Faiola, F. Assessment of the developmental neurotoxicity of silver nanoparticles and silver ions with mouse embryonic stem cells in vitro. J. Interdiscip. Nanomed. 2018, 3, 133–145. [Google Scholar] [CrossRef]
- Kwon, H.B.; Lee, J.H.; Lee, S.H.; Lee, A.Y.; Choi, J.S.; Ahn, Y.S. A Case of Argyria Following Colloidal Silver Ingestion. Ann. Dermatol. 2009, 21, 308–310. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services, National Institute of Health (NIH). Complementary, Alternative, or Integrative Health: What’s in a Name? 2016. Available online: nccih.nih.gov (accessed on 25 September 2019).
- CPI. Nanotechnology, Nanotech Project. 2019. Available online: https://www.nanotechproject.org/cpi/products/ (accessed on 18 April 2019).
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Hart Research Associates. Awareness & Impressions of Synthetic Biology: A Report of Findings Based On A National Survey Among Adults; Hart Research Associates: Washington, DC, USA, 9 September 2010. [Google Scholar]
- Nano and Other Emerging Chemical Technologies Blog, New York Household Cleansing Product Disclosure Program Will Require Disclosure of Nano Ingredients, 9 June 2018. Available online: nanotech.lawbc.com/2018/2006/new-york-household-cleansing-product-disclosure-program-will-require-disclosure-of-nano-ingredients/ (accessed on 25 September 2019).
- Calderon, L.; Han, T.; McGilvery, C.; Yang, L.; Subramaniam, P.; Lee, K.-B.; Schwander, S.; Tetley, T.D.; Georgopoulos, P.G.; Ryan, M.; et al. Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure. Atmos. Environ. 2017, 155, 85–96. [Google Scholar] [CrossRef]
- Tulve, N.S.; Stefaniak, A.B.; Vance, M.E.; Rogers, K.; Mwilu, S.; LeBouf, R.; Schwegler-Berry, D.; Willis, R.; Thomas, T.A.; Marr, L.C. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. Int. J. Hyg. Environ. Health 2015, 218, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Silver Botanicals. Silver Shield Sanitizer, all Natural Colloidal Silver Sanitizer, 12 oz. Available online: https://silver-botanicals.com/products/silver-shield-sanitizer.html (accessed on 18 April 2019).
- Silvercillin™ Spray, Designs for Health. Available online: https://shop.designsforhealth.com/silvercillin-spray?quantity=1&custcol_dfh_size=49 (accessed on 18 April 2019).
- Tsai, C.S.-J.; Theisen, D. A sampler designed for nanoparticles and respirable particles with direct analysis feature. J. Nanoparticle Res. 2018, 20, 209. [Google Scholar] [CrossRef]
- Nazarenko, Y.; Han, T.; Lioy, P.J.; Mainelis, G. Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 515–528. [Google Scholar] [CrossRef]
- Park, J.; Ham, S.; Jang, M.; Lee, J.; Kim, S.; Kim, S.; Lee, K.; Park, D.; Kwon, J.-T.; Kim, H.; et al. Spatial–Temporal Dispersion of Aerosolized Nanoparticles During the Use of Consumer Spray Products and Estimates of Inhalation Exposure. Environ. Sci. Technol. 2017, 51, 7624–7638. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. External Review Draft—Current Intelligence Bulletin: Health Effects of Occupational Exposure to Silver Nanomaterials; Zumwalde, R.D., Kuempel, E.D., Holdsworth, G., Eds.; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati, OH, USA, 2015. [Google Scholar]
- EPA. Fact Sheet: Nanoscale Materials, United States Environmental Protection Agency, 14 August 2017. Available online: https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/fact-sheet-nanoscale-materials (accessed on 25 September 2019).
- Greulich, C.; Braun, D.; Peetsch, A.; Diendorf, J.; Siebers, B.; Epple, M.; Köller, M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2012, 2, 6981. [Google Scholar] [CrossRef]
- Park, E.-J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro 2010, 24, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Piao, M.J.; Kang, K.A.; Lee, I.K.; Kim, H.S.; Kim, S.; Choi, J.Y.; Choi, J.; Hyun, J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 2011, 201, 92–100. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcaterra, H.; Shin, N.; Quirk, P.L.; Tsai, C.S.J. Low Concentration Analysis of Silver Nanoparticles in Consumer Spray Products. Atmosphere 2020, 11, 403. https://doi.org/10.3390/atmos11040403
Calcaterra H, Shin N, Quirk PL, Tsai CSJ. Low Concentration Analysis of Silver Nanoparticles in Consumer Spray Products. Atmosphere. 2020; 11(4):403. https://doi.org/10.3390/atmos11040403
Chicago/Turabian StyleCalcaterra, Hannah, Nara Shin, Phillip L. Quirk, and Candace S.J. Tsai. 2020. "Low Concentration Analysis of Silver Nanoparticles in Consumer Spray Products" Atmosphere 11, no. 4: 403. https://doi.org/10.3390/atmos11040403
APA StyleCalcaterra, H., Shin, N., Quirk, P. L., & Tsai, C. S. J. (2020). Low Concentration Analysis of Silver Nanoparticles in Consumer Spray Products. Atmosphere, 11(4), 403. https://doi.org/10.3390/atmos11040403