A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Global Land Cover (GLC2015) Land-Use Data
2.2. Land-Use Data Processing
2.3. Description of the Weather Research and Forecasting (WRF) Model
2.4. Experiment Design
2.5. Assessment Methods
3. Results and Discussion
3.1. Comparison of the Differences in the Derived Land-Use and Land Parameters
3.2. Impacts of Land-Use Change on Surface Energy Fluxes
3.3. Impacts of Land-Use Change on the Air Temperature and Surface Skin Temperature
3.4. Impacts of Land-Use Change on the Wind Speed
3.5. Impacts of Land-Use Change on the Specific Humidity and Relative Humidity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Zhang, Y. On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett. 2009, 36, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Pielke, R.; Mcalpine, C.A. Climate-relevant land use and land cover change policies. Bull. Amer. Meteorol. Soc. 2016, 97, 195–202. [Google Scholar] [CrossRef]
- Jiménez-Esteve, B.; Udina, M.; Soler, M.R.; Pepin, N.; Miró, J.R. Land use and topography influence in a complex terrain area: A high resolution mesoscale modelling study over the Eastern Pyrenees using the WRF Model. Atmos. Res. 2017, 202, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Lakshmi, V.; Small, E.; Chen, F.; Tewari, M.; Manning, K.W. Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. J. Geophys. Res. Atmos. 2009, 114, 1211–1225. [Google Scholar] [CrossRef]
- Gilliam, R.C.; Pleim, J.E. Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J. Appl. Meteorol. Clim. 2008, 49, 760–774. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Hsu, Y.C.; Lin, P.L.; Lin, T.H. Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteorol. Clim. 2013, 52, 570–587. [Google Scholar] [CrossRef]
- Jiang, X.; Wiedinmyer, C.; Chen, F.; Yang, Z.L.; Lo, J.C.F. Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. J. Geophys. Res. Atmos. 2008, 113, D20312. [Google Scholar] [CrossRef]
- Grossman-Clarke, S.; Zehnder, J.A.; Loridan, T.; Grimmond, C.S.B. Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. J. Appl. Meteorol. Climatol. 2010, 49, 1649–1664. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.H.; Joshi, D.R.; Clay, D.E.; Henebry, G.M. Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classify. Remote Sens. Environ. 2020, 238, 111017. [Google Scholar] [CrossRef]
- Schicker, I.; Arias, D.A.; Seibert, P. Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteorol. Atmos. Phys. 2015, 128, 1–23. [Google Scholar] [CrossRef]
- Xuejie, G.; Yong, L.; Wantao, L.; Zongci, Z.; Giorgi, F. Simulation of effects of land use change on climate in China by a regional climate model. Adv. Atmos. Sci. 2003, 20, 583–592. [Google Scholar] [CrossRef]
- Sequera, P.; González, J.E.; McDonald, K.; LaDochy, S.; Comarazamy, D. Improvements in land-use classification for estimating daytime surface temperatures and Sea-Breeze flows in southern California. Earth Interact. 2016, 20, 1–32. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Tovar-Pescador, J. Influence of land-use misrepresentation on the accuracy of WRF wind estimates: Evaluation of GLCC and CORINE land-use maps in southern Spain. Atmos. Res. 2015, 157, 17–28. [Google Scholar] [CrossRef]
- Sertel, E.; Robock, A.; Ormeci, C. Impacts of land cover data quality on regional climate simulations. Int. J. Climatol. 2010, 30, 1942–1953. [Google Scholar] [CrossRef]
- Taha, H. Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin. Atmos. Environ. 1996, 30, 3423–3430. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, F.; Barlage, M.; Liu, W.; Cheng, G.; Li, X.; Ma, M. Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. J. Geophys. Res. Atmos. 2008, 113, 2739–2740. [Google Scholar] [CrossRef] [Green Version]
- Qu, R.; Cui, X.; Yan, H.; Ma, E.; Zhan, J. Impacts of Land Cover Change on the Near-Surface Temperature in the North China Plain. Adv. Meteorol. 2013, 2013, 409302. [Google Scholar] [CrossRef]
- De Nobletducoudr, N.; Boisier, J.P.; Pitman, A.; Bonan, G.B.; Brovkin, V.; Cruz, F.; Van Der Molen, M.K. Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Clim. 2012, 25, 3261–3281. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.; Fan, S.; Wang, X.M. Impact of refined land-cover data on WRF performance over the Pearl River Delta region, China. Acta Sci. Circums. 2014, 34, 1922–1933. [Google Scholar]
- Meij, A.D.; Vinuesa, J. Impact of SRTM and Corine Land Cover data on meteorological parameters using WRF. Atmos. Res. 2014, 143, 351–370. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Zhang, T.; Wang, W.; Duan, H.; Liu, Y.; Pu, Z. Impacts of land-use data on the simulation of surface air temperature in Northwest China. J. Meteor. Res. 2018, 32, 896–908. [Google Scholar] [CrossRef]
- Abliz, A.; Yang, Y.; Mamat, Z.; Luo, J.; Abdulslam, D.; Xu, Z.; Halik, W. Land-use change and its effects in Charchan Oasis, Xinjiang, China. Land Degrad. Dev. 2016, 28, 106–115. [Google Scholar] [CrossRef]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. Global Cover: The most detailed portrait of Earth. ESA Bull. 2008, 136, 24–31. [Google Scholar]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Zoltan, T. Ensemble Forecasting in WRF. Bull. Am. Meteorol. Soc. 2001, 82, 695–698. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Atmos. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Sun, J.; Mahrt, L. Relationship of surface heat flux to microscale temperature variations: Application to boreas. Bound. Layer Meteor. 1995, 76, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Kondo, J.; Yamazawa, H. Aerodynamic roughness over an inhomogeneous ground surface. Bound. Layer Meteor. 1986, 35, 331–348. [Google Scholar] [CrossRef]
USGS Categories | Category Name | α % | ε | z0m (cm) | C (J·cm−3·°C−1) | λ | GLC2015 Categories |
---|---|---|---|---|---|---|---|
1 | Urban and built-up land | 15 | 0.88 | 100 | 1.67 | 3 | 190 |
2 | Dryland Cropland and Pasture | 19 | 0.985 | 7 | 2.71 | 4 | 11 |
3 | Irrigated Cropland and Pasture | 15 | 0.985 | 7 | 2.2 | 4 | 12 |
4 | Mixed Dryland Irrigated Cropland and Pasture | 17 | 0.985 | 7 | 2.56 | 4 | 20 |
5 | Cropland/Grassland Mosaic | 19 | 0.98 | 15 | 2.56 | 4 | 30 |
6 | Cropland/Woodland Mosaic | 19 | 0.985 | 15 | 3.19 | 4 | 40 |
7 | Grassland | 19 | 0.96 | 8 | 2.37 | 3 | 130 |
8 | Shrubland | 25 | 0.93 | 3 | 1.56 | 3 | 120, 121, 122 |
9 | Mixed Shrubland/Grassland | 23 | 0.95 | 5 | 2.14 | 3 | 110, 130 |
10 | Savanna | 20 | 0.92 | 86 | 2 | 3 | 121, 152, 153 |
11 | Deciduous Broadleaf Forest | 12 | 0.93 | 80 | 2.63 | 4 | 61, 62 |
12 | Deciduous Needleleaf Forest | 11 | 0.94 | 85 | 2.86 | 4 | 81, 82 |
13 | Evergreen Broadleaf Forest | 11 | 0.95 | 265 | 1.67 | 5 | 50 |
14 | Evergreen Needleleaf Forest | 10 | 0.95 | 109 | 3.33 | 4 | 71, 72 |
15 | Mixed Forest | 12 | 0.97 | 80 | 2.11 | 4 | 90 |
16 | Water Bodies | 19 | 0.98 | 0.1 | 0 | 6 | 210 |
17 | Herbaceous Wetland | 12 | 0.95 | 4 | 1.5 | 6 | 180 |
18 | Wooden Wetland | 12 | 0.95 | 5 | 1.14 | 5 | 160, 170 |
19 | Barren or Sparsely Vegetated | 12 | 0.9 | 1 | 0.81 | 2 | 200, 201, 202 |
20 | Herbaceous Tundra | 16 | 0.92 | 4 | 2.87 | 5 | 140 |
21 | Wooded Tundra | 16 | 0.93 | 6 | 2.67 | 5 | 140 |
22 | Mixed Tundra | 16 | 0.92 | 5 | 2.67 | 5 | 140 |
23 | Bare Ground Tundra | 17 | 0.9 | 3 | 1.6 | 2 | 140 |
24 | Snow or Ice | 70 | 0.95 | 0.1 | 0 | 5 | 220 |
LU_Category | USGS_Grid-Point | USGS_Ratio(%) | GLC2015_Grid-Point | GLC2015_Ratio(%) |
---|---|---|---|---|
1 | 453 | 0.08 | 767 | 0.14 |
2 | 22641 | 4.19 | 14424 | 2.67 |
3 | 16791 | 3.10 | 45 | 0.01 |
4 | 0 | 0.00 | 29909 | 5.53 |
5 | 28983 | 5.36 | 3011 | 0.56 |
6 | 5782 | 1.07 | 9702 | 1.79 |
7 | 131577 | 24.32 | 204240 | 37.75 |
8 | 88965 | 16.45 | 14161 | 2.62 |
9 | 53890 | 9.96 | 51778 | 9.57 |
10 | 3154 | 0.58 | 0 | 0.00 |
11 | 4556 | 0.84 | 2159 | 0.40 |
12 | 1925 | 0.36 | 4380 | 0.81 |
13 | 1 | 0.00 | 31 | 0.01 |
14 | 92 | 0.02 | 8805 | 1.63 |
15 | 4939 | 0.91 | 1181 | 0.22 |
16 | 8046 | 1.49 | 7447 | 1.38 |
17 | 0 | 0.00 | 1802 | 0.33 |
18 | 190 | 0.04 | 2 | 0.00 |
19 | 149940 | 27.72 | 179145 | 33.11 |
20 | 0 | 0.00 | 0 | 0.00 |
21 | 14377 | 2.66 | 0 | 0.00 |
22 | 94 | 0.02 | 0 | 0.00 |
23 | 0 | 0.00 | 28 | 0.01 |
24 | 4583 | 0.85 | 7962 | 1.47 |
Total | 540979 | 100.00 | 540979 | 100.00 |
Prams | Exps. | T2 (℃) | Tsk (℃) | Wind (m/s) | Q2 (g/kg) | RH (%) |
---|---|---|---|---|---|---|
Bias | GLC2015 | 1.419 | −3.107 | 0.905 | −2.058 | 2.411 |
USGS | 1.456 | −3.186 | 1.011 | −2.135 | 2.457 | |
RMSE | GLC2015 | 3.066 | 5.897 | 2.356 | 3.438 | 12.579 |
USGS | 3.112 | 6.016 | 2.527 | 3.617 | 12.712 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, H.; Mamtimin, A.; Fan, S.; Ju, C. A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model. Atmosphere 2020, 11, 350. https://doi.org/10.3390/atmos11040350
Li H, Zhang H, Mamtimin A, Fan S, Ju C. A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model. Atmosphere. 2020; 11(4):350. https://doi.org/10.3390/atmos11040350
Chicago/Turabian StyleLi, Huoqing, Hailiang Zhang, Ali Mamtimin, Shuiyong Fan, and Chenxiang Ju. 2020. "A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model" Atmosphere 11, no. 4: 350. https://doi.org/10.3390/atmos11040350
APA StyleLi, H., Zhang, H., Mamtimin, A., Fan, S., & Ju, C. (2020). A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model. Atmosphere, 11(4), 350. https://doi.org/10.3390/atmos11040350