Global Dimming and Brightening Features during the First Decade of the 21st Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiation Transfer Model
2.2. Model Input and Validation Data
2.3. Methodology
3. Results
3.1. Features of Global Dimming and Brightening
3.2. Evaluation of the RTM-Computed Global Dimming and Brightening
3.3. Causes of Global Dimming and Brightening
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. 2009, 114, D00D16. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. WIREs Clim. Chang. 2016, 7, 1757–7780. [Google Scholar] [CrossRef]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteor. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Long, C.N.; Dutton, E.G.; Augustine, J.A.; Wiscombe, W.; Wild, M.; McFarlane, S.A.; Flynn, C.J. Significant decadal brightening of downwelling shortwave in the continental United States. J. Geophys. Res. 2009, 114, D00D06. [Google Scholar] [CrossRef]
- Cutforth, H.W.; Judiesch, D. Long-term changes to incoming solar energy on the Canadian prairie. Agric. For. Meteorol. 2007, 145, 167–175. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Is solar dimming global or urban? Evidence from measurements in Israel between 1954 and 2007. J. Geophys. Res. 2009, 114, D00D17. [Google Scholar] [CrossRef]
- Stjern, C.W.; Kristjansson, J.E.; Hansen, V. Global dimmingand global brightening: An analysis of surface radiation and cloud coverdata in northern Europe. Int. J. Climatol. 2009, 29, 643–653. [Google Scholar] [CrossRef]
- Russak, V. Changes in solar radiation and their influence on temperature trend in Estonia (1955–2007). J. Geophys. Res. 2009, 114, D00D01. [Google Scholar] [CrossRef]
- Kumari, B.P.; Goswamy, B. Seminal role of clouds on solar dimming over the Indian monsoon region. Geophys. Res. Lett. 2010, 37, L06703. [Google Scholar] [CrossRef] [Green Version]
- Zengxin, P.; Feiyue, M.; Wei, W.; Bo, Z.; Xin, L.; Wei, G. Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season. Remote Sens. 2018, 10, 651. [Google Scholar] [CrossRef] [Green Version]
- Xia, X. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res. 2010, 115, D00K06. [Google Scholar] [CrossRef] [Green Version]
- Liley, B. New Zealand dimming and brightening. J. Geophys. Res. 2009, 114, D00D10. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Wild, M.; Brunetti, M.; Guijarro, J.A.; Hakuba, M.Z.; Calbo, J.; Mystakidis, S.; Bartok, B. Reassessment and update of long-terms trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 2015, 120, 9555–9569. [Google Scholar] [CrossRef] [Green Version]
- Manara, V.; Brunetti, M.; Celozzi, A.; Maugeri, M.; Sanchez-Lorenzo, A.; Wild, M. Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmos. Chem. Phys. 2016, 16, 11145–11161. [Google Scholar] [CrossRef] [Green Version]
- Kazadzis, S.; Founda, D.; Psiloglou, B.E.; Kambezidis, H.; Mihalopoulos, N.; Sanchez-Lorenzo, A.; Meleti, C.; Raptis, P.I.; Pierros, F.; Nabat, P. Long-term series and trends in surface solar radiation in Athens, Greece. Atmos. Chem. Phys. 2018, 18, 2395–2411. [Google Scholar] [CrossRef] [Green Version]
- Pfeifroth, U.; Sanchez-Lorenzo, A.; Manara, V.; Trentmann, J.; Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records. J. Geophys. Res. Atmos. 2018, 123, 1735–1754. [Google Scholar] [CrossRef]
- Alexandri, G.; Georgoulias, A.K.; Meleti, C.; Balis, D.; Kourtidis, K.A.; Sanchez-Lorenzo, A.; Panis, P. A high resolution satelliteview of surface solar radiation over the climatically sensitive region of eastern Mediterranean. Atmos. Res. 2017, 188, 107–121. [Google Scholar] [CrossRef]
- Kampezidis, H.D.; Kaskaoutis, D.G.; Kharol, S.K.; Moorthy, K.K.; Satheesh, S.K.; Kalapureddy, M.C.R.; Badarinath, K.V.S.; Sharma, A.R.; Wild, M. Multi-decadal variation of the net downward shortwave radiation over southAsia: The solar dimming effect. Atmos. Environ. 2012, 50, 360–372. [Google Scholar] [CrossRef]
- Hinkelman, L.M.; Jr, P.W.S.; Wielicki, B.A.; Zhang, T.; Wilson, S.R. Surface insolation trends from satellite and ground measurements: Comparisons and challenges. J. Geophys. Res. 2009, 114, D00D20. [Google Scholar] [CrossRef] [Green Version]
- Hatzianastassiou, N.; Papadimas, C.D.; Matsoukas, C.; Pavlakis, K.; Fotiadi, A.; Wild, M.; Vardavas, I. Recent regional surface solar radiation dimming and brightening patterns: Inter-hemispherical asymmetry and a dimming in the Southern Hemisphere. Atmos. Sci. Let. 2012, 13, 43–48. [Google Scholar] [CrossRef]
- International Satellite Cloud Climatology Project (ISCCP), Cloud Data Products. Available online: https://isccp.giss.nasa.gov/research.html (accessed on 5 January 2020).
- IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; 881p. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; 996p. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Vardavas, I.; Taylor, F.W. Radiation and Climate; International Series of Monographs on Physics; Oxford Science Publications: Oxford, UK, 2011; p. 512. [Google Scholar]
- Joseph, J.H.; Wiscombe, W.; Weinman, J. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 1976, 33, 2452–2459. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Pavlakis, K.G.; Drakakis, E.; Hatzidimitriou, D.; Vardavas, I. Global distribution of Earth’s surface shortwave radiation budget. Atmos. Chem. Phys. 2005, 5, 2847–2867. [Google Scholar] [CrossRef] [Green Version]
- Benas, N.; Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Mihalopoulos, N.; Vardavas, I. Aerosol shortwave direct radiative effect and forcing based on MODIS Level 2 data in the Eastern Mediterranean (Crete). Atmos. Chem. Phys. 2011, 11, 12647–12662. [Google Scholar] [CrossRef] [Green Version]
- Papadimas, C.D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I. The direct effect of aerosols on solar radiation over the broader Mediterranean basin. Atmos. Chem. Phys. 2012, 12, 7165–7185. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Technol. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Koepke, P.; Hess, M.; Schult, I.; Shettle, E.P. Global Aerosol Data Set; Rep. No. 243; Max-Planck Institutfür Meteorologie: Hamburg, Germany, 1997; 44p. [Google Scholar]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef] [Green Version]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP-NCAR 50 year reanalysis: Monthly means CD-ROM and documentation. AMS Bull. 2001, 82, 247–267. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Ohmura, A.; Gilgen, H.; Wild, M. Global Energy Balance Archive GEBA, World Climate Program—Water Project A7; Zuercher Geografische Schriften; Verlag der Fachvereine: Zürich, Switzerland, 1989; 62p. [Google Scholar]
- Gilgen, H.; Wild, M.; Ohmura, A. Means and trends of shortwave irradiance at the surface estimated from GEBA. J. Clim. 1998, 11, 2042–2061. [Google Scholar] [CrossRef]
- Ohmura, A.; Dutton, E.G.; Forgan, B.; Frohlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; König-Langlo, G.; McArthur, B.; Muller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Ohmura, A.; Schar, C.; Muller, G.; Folini, D.; Schwarz, M.; Hakuba, M.Z.; Sanchez-Lorenzo, A. The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data 2017, 9, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Global Energy Balance Archive (GEBA). Available online: www.geba.ethz.ch (accessed on 5 January 2020).
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- World Radiation Monitoring Center (WRMC), Baseline Surface Radiation Network (BSRN). Available online: http://www.bsrn.awi.de/ (accessed on 5 January 2020).
- Wild, M.; Folini, D.; Schar, C.; Loeb, N.; Dutton, E.G.; König-Langlo, G. The global energy balance from a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Non-parametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Yu, M.; Yong, L.; Yanbo, S.; Hong, L.; ShiKui, L. Regional long-term trend of ground solar radiation in China over the past 50 years. Sci. China Earth Sci. 2012, 56, 1242–1253. [Google Scholar]
- Zhigao, Z.; Lunche, W.; Aiwen, L.; Ming, Z.; Zigeng, N. Innovative trend analysis of solar radiation in China during 1962–2015. Renew. Energy 2017, 119, 675–689. [Google Scholar]
- Ohmura, A. Observed decadal variations in surface solar radiation and their causes. J. Geophys. Res. 2009, 114, D00D05. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lorenzo, A.; Wild, M. Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century. Atmos. Chem. Phys. 2012, 12, 8635–8644. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lorenzo, A.; Enriquez-Alonso, A.; Wild, M.; Trentmann, J.; Vicente-Serrano, S.M.; Sanchez-Romero, A.; Posselt, R.; Hakuba, M.Z. Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010. Remote Sens. Environ. 2016, 189, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A.K.; Astitha, M. AOD trends during 2001–2010 from observations and model simulations. Atmos. Chem. Phys. 2015, 15, 5521–5535. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, S.; Wild, M.; Jiang, B. Analysis of surface incident shortwave radiation from four satellite products. Remote Sens. Environ. 2015, 165, 186–202. [Google Scholar] [CrossRef]
- Wild, M.; Ohmura, A.; Makowski, K. Impact of global dimming and brightening on global warming. Geophys. Res. Lett. 2007, 34, L04702. [Google Scholar] [CrossRef] [Green Version]
- Medhaug, I.; Stolpe, M.B.; Fischer, E.M.; Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 2017, 545, 41–47. [Google Scholar] [CrossRef]
Comparison | R | 2nd–4th Quadrant | 1st–3rd Quadrant |
---|---|---|---|
Δ(SSR)-Δ(Total Cloud cover) | −0.58 | 71.40% | 28.60% |
Δ(SSR)-Δ(High Cloud cover) | 0.02 | 48.20% | 51.80% |
Δ(SSR)-Δ(Middle Cloud cover) | −0.30 | 69.20% | 30.80% |
Δ(SSR)-Δ(Low Cloud cover) | −0.37 | 56.40% | 43.60% |
Δ(SSR)-Δ(Aerosol Optical Thickness) | −0.25 | 63.20% | 36.80% |
Δ(SSR)-Δ(Optical Thickness Absorption High Cloud) | −0.47 | 74.80% | 25.20% |
Δ(SSR)-Δ(Optical Thickness Absorption Middle Cloud) | −0.32 | 68.00% | 32.00% |
Δ(SSR)-Δ(Optical Thickness Absorption Low Cloud) | −0.24 | 63.30% | 36.70% |
Δ(SSR)-Δ(Optical Thickness Scattering High Cloud) | −0.44 | 76.00% | 24.00% |
Δ(SSR)-Δ(Optical Thickness Scattering Middle Cloud) | −0.31 | 69.00% | 31.00% |
Δ(SSR)-Δ(Optical Thickness Scattering Low Cloud) | −0.24 | 61.60% | 38.40% |
Δ(SSR)-Δ(Precipitable Water) | −0.28 | 61.40% | 38.60% |
Causes | Global | NH | SH |
---|---|---|---|
CONTRIBUTION OF TOTAL CLOUD COVER TO GDB | −1.4 W/m2 | −1.4 W/m2 | −1.1 W/m2 |
CONTRIBUTION OF HIGH CLOUD COVER TO GDB | −0.7 W/m2 | −0.6 W/m2 | −0.8 W/m2 |
CONTRIBUTION OF MIDDLE CLOUD COVER TO GDB | −2 W/m2 | −1.7 W/m2 | −2.4 W/m2 |
CONTRIBUTION OF LOW CLOUD COVER TO GDB | 0.9 W/m2 | 0.7 W/m2 | 1.6 W/m2 |
CONTRIBUTION OF HIGH CLOUD OPTICAL THICKNESS TO GDB | −0.5 W/m2 | −0.4 W/m2 | −0.5 W/m2 |
CONTRIBUTION OF MIDDLE CLOUD OPTICAL THICKNESS TO GDB | −0.1 W/m2 | −0.05 W/m2 | −0.1 W/m2 |
CONTRIBUTION OF LOW CLOUD OPTICAL THICKNESS TO GDB | 0 W/m2 | −0.03 W/m2 | 0.02 W/m2 |
CONTRIBUTION OF AEROSOL OPTICAL THICKNESS TO GDB | −0.7 W/m2 | −0.2 W/m2 | −1.7 W/m2 |
CONTRIBUTION OF PRECIPITABLE WATER TO GDB | −0.1 W/m2 | −0.13 W/m2 | 0.04 W/m2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatzianastassiou, N.; Ioannidis, E.; Korras-Carraca, M.-B.; Gavrouzou, M.; Papadimas, C.D.; Matsoukas, C.; Benas, N.; Fotiadi, A.; Wild, M.; Vardavas, I. Global Dimming and Brightening Features during the First Decade of the 21st Century. Atmosphere 2020, 11, 308. https://doi.org/10.3390/atmos11030308
Hatzianastassiou N, Ioannidis E, Korras-Carraca M-B, Gavrouzou M, Papadimas CD, Matsoukas C, Benas N, Fotiadi A, Wild M, Vardavas I. Global Dimming and Brightening Features during the First Decade of the 21st Century. Atmosphere. 2020; 11(3):308. https://doi.org/10.3390/atmos11030308
Chicago/Turabian StyleHatzianastassiou, Nikolaos, Eleftherios Ioannidis, Marios-Bruno Korras-Carraca, Maria Gavrouzou, Christos D. Papadimas, Christos Matsoukas, Nikolaos Benas, Angeliki Fotiadi, Martin Wild, and Ilias Vardavas. 2020. "Global Dimming and Brightening Features during the First Decade of the 21st Century" Atmosphere 11, no. 3: 308. https://doi.org/10.3390/atmos11030308
APA StyleHatzianastassiou, N., Ioannidis, E., Korras-Carraca, M. -B., Gavrouzou, M., Papadimas, C. D., Matsoukas, C., Benas, N., Fotiadi, A., Wild, M., & Vardavas, I. (2020). Global Dimming and Brightening Features during the First Decade of the 21st Century. Atmosphere, 11(3), 308. https://doi.org/10.3390/atmos11030308