Evaluation of Regional Air Quality Models over Sydney, Australia: Part 2, Comparison of PM2.5 and Ozone
Abstract
:1. Introduction
- The models overestimated wind speeds, especially at night time;
- Temperatures were well simulated, with the largest biases also seen overnight;
- The lower atmosphere was drier in the models than actually observed;
- Meso-scale meteorological features, such as sea breezes were reproduced to some extent in the simulations [29].
2. Methods
2.1. Air Quality Modelling Systems
2.2. Air Quality Model Configuration
2.3. Emissions
2.4. Initial and Boundary Conditions
2.5. Observations
3. Results and Discussion of Model Evaluation for O3
3.1. Domain Average Model Performance for Hourly O3
3.2. Domain Average Model Performance for 4 Hourly Average O3
3.3. Site-Specific Model Performance for Hourly O3
3.4. Model Performance for Prediction of O3 Pollution Events
- Site-specific aggregated results: POD of 50%–83 % and FAR of 14%–46%
- Region-specific aggregated results: POD of 62%–86 % and FAR of 12%–35%
- Domain-wide results: POD of 67%–93 % and FAR of 4%–21%
3.5. Model Performance for Prediction of O3 Production Regime
4. Results and Discussion of Model Evaluation for PM2.5
4.1. Domain Average Model Performance for Daily PM2.5
4.2. Site-Specific Model Performance for Daily PM2.5
4.3. Model Performance for PM2.5 Inorganic Composition
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Supplementary information about the meteorological setup of the models (see Table A1)
- Analysis of the performance of the models for NOx, including composite diurnal cycles for observed and modelled hourly average NOx concentration in ppb and Taylor diagrams for each campaign period (see Figure A1).
- Additional analysis of the performance of the models for hourly average PM2.5, including composite diurnal cycles for observed and modelled hourly average PM2.5 concentration in µgm−3 and Taylor diagrams from each campaign period (see Figure A3).
- Analysis of the performance of the models for ammonia, in the form of a box and whisker plot (see Figure A4).
Model Identifier | Parameter | W-UM1 | W-UM2 | W-A11 | O-CTM | C-CTM | W-NC1 | W-NC2 |
Research group | Univ. melbourne | Univ. melbourne | ANSTO | NSW OEH | CSIRO | NCSU | NCSU | |
Model specifications | Met. model | WRF | WRF | WRF | CCAM | CCAM | WRF | WRF |
Chem. model | CMAQ | WRF-Chem | WRF-Chem with simplified Radon only | CSIRO-CTM | CSIRO-CTM | WRF-Chem | WRF-Chem-ROMS | |
Met model version | 3.6.1 | 3.7.1 | 3.7.1 | r−3019 | r−2796 | 3.7.1 | 3.7.1 | |
Domain | Nx | 80,73,97,103 | 80,73,97,103 | 80, 73, 97, 103 | 75, 60, 60, 60 | 88, 88, 88, 88 | 79, 72, 96, 102 | 79, 72, 96, 102 |
Ny | 70,91,97,103 | 70,91.97.103 | 70, 91, 97, 103 | 65, 60, 60, 60 | 88, 88, 88, 88 | 69, 90, 96, 102 | 69, 90, 96, 102 | |
Vertical layers | 33 | 33 | 50 | 35 | 35 | 32 | 32 | |
Height of first layer (m) | 33.5 | 56 | 19 | 10 | 20 | 35 | 35 | |
Initial and Boundary conditions | Met input/BCs | ERA Interim | ERA Interim | ERA Interim | ERA Interim | ERA Interim | NCEP/FNL | NCEP/FNL |
Topography/Land use | Geoscience Australia DEM for inner domain, USGS elsewhere | Geoscience Australia DEM for inner domain. USGS elsewhere | Geoscience Australia DEM for inner domain, USGS elsewhere. MODIS land use | MODIS | MODIS | USGS | USGS | |
SST | High-res SST analysis (RTG_SST) | High-res SST analysis (RTG_SST) | High-res SST analysis (RTG_SST) | SST from ERA Interim | SSTs from ERA Interim | High-res SST analysis (RTG_SST) | Simulated by ROMS | |
Integration | 24 h simulations, each with 12 h spin-up number | Continuous with 2D spin up | Continuous with 10 d spin up | Continuous with 1 mth spin up | Continuous with 1 mth spin up | Continuous with 8 d spin up | Continuous with 8 d spin up | |
Data assimilation | Grid-nudging outer domain above the PBL | Grid-nudging outer domain above the PBL | Spectral nudging in domain 1 above the PBL (scale-selective relaxation to analysis) | Scale-selective filter to nudge towards the ERA-Interim data | Scale-selective filter to nudge towards the ERA-Interim data | Gridded analysis nudging above the PBL | Gridded analysis nudging above the PBL | |
Parameterisations | Microphysics | Morrison | LIN | WSM6 | Prognostic condensate scheme | Prognostic condensate scheme | Morrison | Morrison |
LW radiation | RRTMG | RRTMG | RRTMG | GFDL | GFDL | RRTMG | RRTMG | |
SW radiation | RRTMG | GSFC | RRTMG | GFDL | GFDL | RRTMG | RRTMG | |
Land surface | NOAH | NOAH | NOAH | Kowalczyk scheme | Kowalczyk scheme | NOAH | NOAH | |
PBL | MYJ | YSU | MYJ | Local Richardson number and non-local stability | Local Richardson number and non-local stability | YSU | YSU | |
UCM | 3-category UCM | NOAH UCM | Single layer UCM | Town Energy budget approach | Town Energy budget approach | Single layer UCM | Single layer UCM | |
Convection | G3 (domains 1–3, off for domain 4) | G3 | G3 | Mass-flux closure | Mass-flux closure | MSKF | MSKF | |
Aerosol feedbacks | No | No | No | Prognostic aerosols with direct and indirect effects | Prognostic aerosols with direct and indirect effects | Yes | Yes | |
Cloud feedbacks | No | No | No | Yes | Yes | Yes | Yes |
Campaign | Model | 4 Hourly Rolling Means | ||||
---|---|---|---|---|---|---|
Mean ± Sd (OBS) | Mean ± Sd (Model) | NMB % | NME % | r | ||
MUMBA | C-CTM | 18 ± 11 | 17 ± 10 | −6.2 | 29 | 0.79 |
O-CTM | 17 ± 10 | −5.0 | 31 | 0.79 | ||
W-NC1 | 16 ± 10 | −6.9 | 33 | 0.72 | ||
W-NC2 | 17 ± 10 | −6.4 | 31 | 0.75 | ||
W-UM1 | 16 ± 10 | −7.8 | 28 | 0.80 | ||
W-UM2 | 16 ± 11 | −8.6 | 28 | 0.81 | ||
SPS1 | C-CTM | 17 ± 10 | 17 ± 9 | 2.0 | 30 | 0.77 |
O-CTM | 17 ± 9 | 2.6 | 34 | 0.71 | ||
W-NC1 | 16 ± 9 | −0.8 | 34 | 0.71 | ||
W-NC2 | 17 ± 9 | −0.2 | 33 | 0.73 | ||
W-UM1 | 16 ± 9 | −1.1 | 28 | 0.80 | ||
W-UM2 | 16 ± 9 | −1.1 | 28 | 0.80 | ||
SPS2 | C-CTM | 13 ± 9 | 14 ± 8 | 13.1 | 43 | 0.69 |
O-CTM | 14 ± 7 | 10.6 | 45 | 0.65 | ||
W-NC1 | 13 ± 8 | 2.5 | 44 | 0.65 | ||
W-NC2 | 13 ±7 | 2.7 | 44 | 0.65 | ||
W-UM1 | 14 ± 7 | 7.5 | 39 | 0.72 | ||
W-UM2 | 14 ±8 | 10.3 | 42 | 0.70 |
References
- Arnold, J.R.; Dennis, R.L.; Tonnesen, G.S. Diagnostic evaluation of numerical air quality models with specialized ambient observations: Testing the Community Multiscale Air Quality modeling system (CMAQ) at selected SOS 95 ground sites. Atmos. Environ. 2003, 37, 1185–1198. [Google Scholar] [CrossRef]
- State of New South Wales and NSW Environment Protection Authority. New South Wales State of the Environment 2015; NSW Environment Protection Authority (EPA): Sydney, New South Wales, Australia, 2015.
- Office of Environment and Heritage. New South Wales Air Quality Statement 2018; Office of Environment and Heritage, Ed.; Office of Environment and Heritage: Sydney, New South Wales, Australia, 2019.
- Paton-Walsh, C.; Rayner, P.; Simmons, J.; Fiddes, S.L.; Schofield, R.; Bridgman, H.; Beaupark, S.; Broome, R.; Chambers, S.D.; Chang, L.T.-C.; et al. A Clean Air Plan for Sydney: An Overview of the Special Issue on Air Quality in New South Wales. Atmosphere 2019, 10, 774. [Google Scholar] [CrossRef] [Green Version]
- Cope, M.; Lee, S.; Walsh, S.; Middleton, M.; Bannister, M.; Delaney, W.; Marshall, A. Projection of Air Quality in Melbourne, Australia in 2030 and 2070 Using a Dynamic Downscaling System. In Air Pollution Modeling and Its Application Xxii; Steyn, D.G., Builtjes, P.J.H., Timmermans, R.M.A., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Cope, M.E.; Keywood, M.D.; Emmerson, K.M.; Galbally, I.E.; Boast, K.; Chambers, S.; Cheng, M.; Crumeyrolle, S.; Dunne, E.; Fedele, R.; et al. Sydney Particle Study—Stage II Sydney Particle Study Final Report; CSIRO Marine and Atmospheric Research: Sydney, Australia, 2014. [Google Scholar]
- Keywood, M.; Hibberd, M.; Emmerson, K. Australia State of the Environment 2016: Atmosphere; Australian Government Department of the Environment and Energy: Canberra, Australia, 2017. [CrossRef]
- Duc, H.N.; Watt, S.; Salter, D.; Trieu, T. Modelling October 2013 bushfire pollution episode in New South Wales, Australia. In Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining, Sydney, Australia, 8 July 2014; pp. 544–548. [Google Scholar]
- Keywood, M.; Cope, M.; Meyer, C.P.M.; Iinuma, Y.; Emmerson, K. When smoke comes to town: The impact of biomass burning smoke on air quality. Atmos. Environ. 2015, 121, 13–21. [Google Scholar] [CrossRef]
- Rea, G.; Paton-Walsh, C.; Turquety, S.; Cope, M.; Griffith, D. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia. Atmos. Environ. 2016, 131, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Broome, R.A.; Fann, N.; Cristina, T.J.N.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, D.; Agnew, P.; Beevers, S.; Chemel, C.; Cooke, S.; Davis, L.; Derwent, D.; Francis, X.; Fraser, A.; Kitwiroon, N. Defra Phase 2 Regional Model Evaluation; Department of Environment, Food and Rural Affairs: London, UK, 2012.
- Dore, A.J.; Carslaw, D.C.; Braban, C.; Cain, M.; Chemel, C.; Conolly, C.; Derwent, R.G.; Griffiths, S.J.; Hall, J.; Hayman, G.; et al. Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK. Atmos. Environ. 2015, 119, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Im, U.; Bianconi, R.; Solazzo, E.; Kioutsioukis, I.; Badia, A.; Balzarini, A.; Baró, R.; Bellasio, R.; Brunner, D.; Chemel, C. Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone. Atmos. Environ. 2015, 115, 404–420. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Savage, N.; Jorba, O.; Eder, B.; Giordano, L.; Badia, A.; Balzarini, A.; Baró, R.; Bianconi, R.; Chemel, C.; et al. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2. Atmos. Environ. 2015, 115, 470–498. [Google Scholar] [CrossRef]
- Campbell, P.; Zhang, Y.; Yahya, K.; Wang, K.; Hogrefe, C.; Pouliot, G.; Knote, C.; Hodzic, A.; San Jose, R.; Perez, J.L.; et al. A multi-model assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation International Initiative (AQMEII) phase 2 over North America: Part I. Indicators of the sensitivity of O3 and PM2.5 formation regimes. Atmos. Environ. 2015, 115, 569–586. [Google Scholar] [CrossRef]
- Im, U.; Bianconi, R.; Solazzo, E.; Kioutsioukis, I.; Badia, A.; Balzarini, A.; Baró, R.; Bellasio, R.; Brunner, D.; Chemel, C.; et al. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmos. Environ. 2015, 115, 421–441. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yahya, K.; Zhang, Y.; Hogrefe, C.; Pouliot, G.; Knote, C.; Hodzic, A.; San Jose, R.; Perez, J.L.; Jiménez-Guerrero, P.; et al. A multi-model assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of column variable predictions using satellite data. Atmos. Environ. 2015, 115, 587–603. [Google Scholar] [CrossRef]
- Cope, M.; Lee, S.; Noonan, J.; Lilley, B.; Hess, D.; Azzi, M. Chemical Transport Model: Technical Description; Centre for Australian Weather and Climate Research: Melbourne, Victoria, Australia, 2009.
- Emmerson, K.M.; Galbally, I.E.; Guenther, A.B.; Paton-Walsh, C.; Guerette, E.A.; Cope, M.E.; Keywood, M.D.; Lawson, S.J.; Molloy, S.B.; Dunne, E.; et al. Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia. Atmos. Chem. Phys. 2016, 16, 6997–7011. [Google Scholar] [CrossRef] [Green Version]
- Keywood, M.; Selleck, P.; Galbally, I.; Lawson, S.; Powell, J.; Cheng, M.; Gillett, R.; Ward, J.; Harnwell, J.; Dunne, E.; et al. Sydney Particle Study 1—Aerosol and Gas Data Collection; Commonwealth Scientific and Industrial Research Organisation: Sydney, Australia, 2016. [Google Scholar] [CrossRef]
- Keywood, M.; Selleck, P.; Reisen, F.; Cohen, D.; Chambers, S.; Cheng, M.; Cope, M.; Crumeyrolle, S.; Dunne, E.; Emmerson, K.; et al. Comprehensive aerosol and gas data set from the Sydney Particle Study. Earth Syst. Sci. Data Discuss. 2019, 2019, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Keywood, M.; Selleck, P.; Galbally, I.; Lawson, S.; Powell, J.; Cheng, M.; Gillett, R.; Ward, J.; Harnwell, J.; Dunne, E.; et al. Sydney Particle Study 2—Aerosol and Gas Data Collection; Commonwealth Scientific and Industrial Research Organisation: Sydney, Australia, 2016. [Google Scholar] [CrossRef]
- Dominick, D.; Wilson, S.R.; Paton-Walsh, C.; Humphries, R.; Guérette, E.-A.; Keywood, M.; Kubistin, D.; Marwick, B. Characteristics of airborne particle number size distributions in a coastal-urban environment. Atmos. Environ. 2018, 186, 256–265. [Google Scholar] [CrossRef]
- Dominick, D.; Wilson, S.R.; Paton-Walsh, C.; Humphries, R.; Guérette, É.-A.; Keywood, M.; Selleck, P.; Kubistin, D.; Marwick, B. Particle Formation in a Complex Environment. Atmosphere 2019, 10, 275. [Google Scholar] [CrossRef] [Green Version]
- Guérette, É.-A.; Paton-Walsh, C.; Galbally, I.; Molloy, S.; Lawson, S.; Kubistin, D.; Buchholz, R.; Griffith, D.W.; Langenfelds, R.L.; Krummel, P.B. Composition of clean marine air and biogenic influences on VOCs during the MUMBA campaign. Atmosphere 2019, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Paton-Walsh, C.; Guérette, É.-A.; Emmerson, K.; Cope, M.; Kubistin, D.; Humphries, R.; Wilson, S.; Buchholz, R.; Jones, N.; Griffith, D. Urban air quality in a coastal city: Wollongong during the MUMBA campaign. Atmosphere 2018, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- Paton-Walsh, C.; Guerette, E.A.; Kubistin, D.; Humphries, R.; Wilson, S.R.; Dominick, D.; Galbally, I.; Buchholz, R.; Bhujel, M.; Chambers, S.; et al. The MUMBA campaign: Measurements of urban, marine and biogenic air. Earth Syst. Sci. Data 2017, 9, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Monk, K.; Guérette, E.-A.; Paton-Walsh, C.; Silver, J.D.; Emmerson, K.M.; Utembe, S.R.; Zhang, Y.; Griffiths, A.D.; Chang, L.T.-C.; Duc, H.N.; et al. Evaluation of Regional Air Quality Models over Sydney and Australia: Part 1—Meteorological Model Comparison. Atmosphere 2019, 10, 374. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.T.-C.; Duc, H.N.; Scorgie, Y.; Trieu, T.; Monk, K.; Jiang, N. Performance Evaluation of CCAM-CTM Regional Airshed Modelling for the New South Wales Greater Metropolitan Region. Atmosphere 2018, 9, 486. [Google Scholar] [CrossRef] [Green Version]
- Nguyen Duc, H.; Chang, L.T.-C.; Trieu, T.; Salter, D.; Scorgie, Y. Source Contributions to Ozone Formation in the New South Wales Greater Metropolitan Region, Australia. Atmosphere 2018, 9, 443. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.T.-C.; Scorgie, Y.; Duc, H.N.; Monk, K.; Fuchs, D.; Trieu, T. Major Source Contributions to Ambient PM2.5 and Exposures within the New South Wales Greater Metropolitan Region. Atmosphere 2019, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Utembe, S.R.; Rayner, P.J.; Silver, J.D.; Guérette, E.-A.; Fisher, J.A.; Emmerson, K.M.; Cope, M.; Paton-Walsh, C.; Griffiths, A.D.; Duc, H.; et al. Hot Summers: Effect of Extreme Temperatures on Ozone in Sydney, Australia. Atmosphere 2018, 9, 466. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jena, C.; Wang, K.; Paton-Walsh, C.; Guérette, É.-A.; Utembe, S.; Silver, J.D.; Keywood, M. Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part I: Model Description and WRF/Chem-ROMS Evaluation Using Surface and Satellite Data and Sensitivity to Spatial Grid Resolutions. Atmosphere 2019, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, K.; Jena, C.; Paton-Walsh, C.; Guérette, É.-A.; Utembe, S.; Silver, J.D.; Keywood, M. Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part II: Comparison of WRF/Chem and WRF/Chem-ROMS and Impacts of Air-Sea Interactions and Boundary Conditions. Atmosphere 2019, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division: Boulder, CO, USA, 2005. [Google Scholar]
- Wang, K.; Zhang, Y.; Yahya, K.; Wu, S.Y.; Grell, G. Implementation and initial application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality. Atmos. Environ. 2015, 115, 716–732. [Google Scholar] [CrossRef]
- He, J.; He, R.; Zhang, Y. Impacts of Air–sea Interactions on Regional Air Quality Predictions Using a Coupled Atmosphere-Ocean Model in Southeastern US Aerosol Air Qual. Air Qual. Res. 2018, 18, 1044–1067. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 community multiscale air quality (CMAQ) model aerosol component—1. Model description. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.; Azzi, M.; Carras, J.; Lilley, W.; Manins, P.C.; Nelson, P.; Ng, L.; et al. The Australian Air Quality Forecasting System. Part I: Project description and early outcomes. J. Appl. Meteorol. 2004, 43, 649–662. [Google Scholar] [CrossRef]
- McGregor, J.L.; Dix, M.R. An Updated Description of the Conformal-Cubic Atmospheric Model; Springer: New York, NY, USA, 2008. [Google Scholar]
- Hough, A. The Calculation of Photolysis Rates for Use in Global Tropospheric Modelling Studies; UKAEA Atomic Energy Research Establishment Environmental and Medical: Abingdon-on-Thames, UK, 1988. [Google Scholar]
- Wesely, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Clarke, A.; Kapustin, V.; Howell, S.; Moore, K.; Lienert, B.; Masonis, S.; Anderson, T.; Covert, D. Sea-salt size distribution from breaking waves: Implications for marine aerosol production and optical extinction measurements during SEAS. J. Atmos. Ocean. Technol. 2003, 20, 1362–1374. [Google Scholar] [CrossRef]
- Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Gong, S.L.; Barrie, L.A.; Blanchet, J.-P. Modeling sea-salt aerosols in the atmosphere: 1. Model development. J. Geophys. Res. Atmos. 1997, 102, 3805–3818. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Shao, Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. Atmos. 1999, 104, 16827–16842. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; Office of Research and Development: Washington, DC, USA, 1999.
- Erisman, J.W.; Van Pul, A.; Wyers, P. Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ. 1994, 28, 2595–2607. [Google Scholar] [CrossRef]
- Slinn, S.A.; Slinn, W.G.N. Predictions for particle deposition on natural waters. Atmos. Environ. 1980, 14, 1013–1016. [Google Scholar] [CrossRef]
- Pleim, J.; Venkatram, A.; Yamartino, R. ADOM/TADAP Model Development Program, vol. 4: The Dry Deposition Module; Ontario Ministry of the Environment: Rexdale, ON, Canada, 1984. [Google Scholar]
- Easter, R.C.; Ghan, S.J.; Zhang, Y.; Saylor, R.D.; Chapman, E.G.; Laulainen, N.S.; Abdul-Razzak, H.; Leung, L.R.; Bian, X.; Zaveri, R.A. MIRAGE: Model description and evaluation of aerosols and trace gases. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Dentener, F.; Van Aardenne, J.; Monni, S.; Pagliari, V.; Orlandini, L.; Klimont, Z.; Kurokawa, J.-I.; Akimoto, H.; Ohara, T. EDGAR-HTAP: A Harmonized Gridded Air Pollution Emission Dataset based on National Inventories; European Commission Publications Office: Ispra, Italy, 2012. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G. Updates to the Carbon Bond Chemical Mechanism: CB05. Final Report; US Environmental Protection Agency: Research Triangle Park, NC, USA, 2005.
- Sarwar, G.; Luecken, D.; Yarwood, G.; Whitten, G.Z.; Carter, W.P.L. Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary assessment. J. Appl. Meteorol. Climatol. 2008, 47, 3–14. [Google Scholar] [CrossRef]
- Whitten, G.Z.; Heo, G.; Kimura, Y.; McDonald-Buller, E.; Allen, D.T.; Carter, W.P.; Yarwood, G. A new condensed toluene mechanism for Carbon Bond: CB05-TU. Atmos. Environ. 2010, 44, 5346–5355. [Google Scholar] [CrossRef]
- Sarwar, G.; Appel, K.; Carlton, A.; Mathur, R.; Schere, K.; Zhang, R.; Majeed, M. Impact of a new condensed toluene mechanism on air quality model predictions in the US. Geosci. Model Dev. 2011, 4, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 1997, 102, 25847–25879. [Google Scholar] [CrossRef] [Green Version]
- Kuik, F.; Lauer, A.; Churkina, G.; Denier Van Der Gon, H.A.C.; Fenner, D.; Mar, K.A.; Butler, T.M. Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: Sensitivity to resolution of model grid and input data. Geosci. Model Dev. 2016, 9, 4339–4363. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Fahey, K.; Napelenok, S.; Roselle, S.; Mathur, R. Examining the impact of CMAQ model updates on aerosol sulfate predictions. In Proceedings of the 10th Annual CMAS Models-3 User’s Conference, Chapel Hill, NC, USA, 24–26 October 2011. [Google Scholar]
- Kazil, J.; McKeen, S.; Kim, S.W.; Ahmadov, R.; Grell, G.A.; Talukdar, R.K.; Ravishankara, A.R. Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO-1234yf. J. Geophys. Res. 2014, 119. [Google Scholar] [CrossRef]
- Tie, X.; Madronich, S.; Walters, S.; Zhang, R.; Rasch, P.; Collins, W. Effect of clouds on photolysis and oxidants in the troposphere. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Roselle, S.J.; Schere, K.L.; Pleim, J.E.; Hanna, A.F. Photolysis rates for CMAQ. Sci. Algorithms EPA Models 3 Community Multiscale Air Qual. Model. Syst. 1999, 14, 1–8. [Google Scholar]
- Donahue, N.M.; Robinson, A.L.; Stanier, C.O.; Pandis, S.N. Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef]
- Shrivastava, M.K.; Lane, T.E.; Donahue, N.M.; Pandis, S.N.; Robinson, A.L. Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Ahmadov, R.; McKeen, S.; Robinson, A.; Bahreini, R.; Middlebrook, A.; De Gouw, J.; Meagher, J.; Hsie, E.Y.; Edgerton, E.; Shaw, S. A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Atmos. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Carlton, A.G.; Bhave, P.V.; Napelenok, S.L.; Edney, E.O.; Sarwar, G.; Pinder, R.W.; Pouliot, G.A.; Houyoux, M. Model Representation of Secondary Organic Aerosol in CMAQv4.7. Environ. Sci. Technol. 2010, 44, 8553–8560. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.; Bhave, P.V. Simulating the degree of oxidation in atmospheric organic particles. Environ. Sci. Technol. 2012, 46, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, I.J.; Hass, H.; Schell, B.; Binkowski, F.S. Regional modelling of particulate matter with MADE. Environ. Manag. Health 1999, 10, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Fahey, K.M.; Carlton, A.G.; Pye, H.O.T.; Baek, J.; Hutzell, W.T.; Stanier, C.O.; Baker, K.R.; Appel, K.W.; Jaoui, M.; Offenberg, J.H. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1. Geosci. Model Dev. 2017, 10, 1587–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- State of New South Wales and NSW Environment Protection Authority. 2008 Calendar Year Air Emissions Inventory for the Greater Metropolitan Region in NSW. Available online: https://www.epa.nsw.gov.au/your-environment/air/air-emissions-inventory/air-emissions-inventory-2008 (accessed on 6 November 2019).
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Jiang, X.; Heald, C.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Emmerson, K.M.; Cope, M.E.; Galbally, I.E.; Lee, S.; Nelson, P.F. Isoprene and monoterpene emissions in south-east Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric observations. Atmos. Chem. Phys. 2018, 18, 7539–7556. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Heil, A.; Andreae, M.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.; Razinger, M.; Schultz, M.; Suttie, M. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Akagi, S.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.; Reid, J.; Karl, T.; Crounse, J.; Wennberg, P. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce. NCEP FNL operational model global tropospheric analyses, continuing from July 1999. In Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder, CO, USA, 2000. [Google Scholar]
- Gantt, B.; He, J.; Zhang, X.; Zhang, Y.; Nenes, A. Incorporation of advanced aerosol activation treatments into CESM/CAM5: Model evaluation and impacts on aerosol indirect effects. Atmos. Chem. Phys. 2014, 14, 7485–7497. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, Y. Improvement and further development in CESM/CAM5: Gas-phase chemistry and inorganic aerosol treatments. Atmos. Chem. Phys. 2014, 14, 9171–9200. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, Y.; Tilmes, S.; Emmons, L.; Lamarque, J.-F.; Glotfelty, T.; Hodzic, A.; Vitt, F. CESM/CAM5 improvement and application: Comparison and evaluation of updated CB05-GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate. Geosci. Model Dev. Discuss. 2015, 8, 3999. [Google Scholar] [CrossRef] [Green Version]
- Glotfelty, T.; He, J.; Zhang, Y. Improving organic aerosol treatments in CESM/CAM 5: Development, application, and evaluation. J. Adv. Model. Earth Syst. 2017, 9, 1506–1539. [Google Scholar] [CrossRef] [Green Version]
- Galbally, I.E.; Meyer, C.P.; Ye, Y.; Bentley, S.T.; Carpenter, L.J.; Monks, P.S. Ozone, Nitrogen Oxides (NOx) and Volatile Organic Compounds in Near Surface Air at Cape Grim; Bureau of Meteorology and CSIRO Division of Atmospheric Research: Melbourne, Victoria, Australia, 1996; pp. 81–88.
- Woodhouse, M.T.; Luhar, A.K.; Stevens, L.; Galbally, I.; Thathcher, M.; Uhe, P.; Wolff, H.; Noonan, J.; Molloy, S. Australian reactive gas emissions in a global chemistry-climate model and initial results. Air Qual. Clim. Chang. 2015, 49, 31–38. [Google Scholar]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T. Description and evaluation of the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- NSW Department of Planning Industry and Environment. Current and Forecast Air Quality. Available online: https://www.environment.nsw.gov.au/aqms/aqi.htm (accessed on 11 November 2019).
- Department of the Environment and Energy. National Standards for Criteria Air Pollutants in Australia; Department of the Environment and Energy: Canberra, Australia, 2005.
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [Green Version]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.J.; Burgers, M.; Dewundege, P.; Johnson, M. The Australian Air Quality Forecasting System: Exploring first steps towards determining the limits of predictability for short-term ozone forecasting. Bound. Layer Meteorol. 2005, 116, 363–384. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-H.; Chang, J.S. On the indicator-based approach to assess ozone sensitivities and emissions features. J. Geophys. Res. Atmos. 1998, 103, 3453–3462. [Google Scholar] [CrossRef]
- Tonnesen, G.S.; Dennis, R.L. Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NO x: 1. Local indicators of instantaneous odd oxygen production sensitivity. J. Geophys. Res. Atmos. 2000, 105, 9213–9225. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, X.-Y.; Wang, K.; Vijayaraghavan, K.; Jacobson, M.Z. Probing into regional O3 and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
Parameter | W-UM1 | W-UM2 | O-CTM | C-CTM | W-NC1 | W-NC2 | |
Research group | Univ. melbourne | Univ. melbourne | DPIE | CSIRO | NCSU | NCSU | |
Model specifications | Met. model | WRF | WRF | CCAM | CCAM | WRF | WRF |
Chem. model | CMAQ | WRF-Chem | CSIRO-CTM | CSIRO-CTM | WRF-Chem | WRF-Chem-ROMS | |
Met. model version | 3.6.1 | 3.7.1 | r−4271:4285M | r−2796 | 3.7.1 | 3.7.1 | |
Chem. model version | 5.0.2 | 3.7.1 | r−1057 | r−1035 | 3.7.1 | 3.7.1 | |
Domain | Nests | 4 | 4 | 4 | 4 | 4 | 4 |
Horizontal res. (each nest) (km) | 81, 27,9,3 | 81, 27,9,3 | 80, 27,9,3 | 80, 27,9,3 | 81, 27,9,3 | 81, 27,9,3 | |
Nx | 67, 60, 84, 90 | 80, 73, 97, 103 | 75, 60, 60, 60 | 75, 60, 60, 60 | 79, 72, 96, 102 | 79, 72, 96, 102 | |
Ny | 57, 78, 84, 90 | 70, 91, 97, 103 | 65, 60, 60, 60 | 65, 60, 60, 60 | 69, 90, 96, 102 | 69, 90, 96, 102 | |
Vertical layers | 29 | 33 | 16 | 16 | 32 | 32 | |
Height of first layer (m) | 33.5 | 56 | ~20 | ~20 | ~35 | ~35 | |
Chemical parametisations | Gas-phase mechanism | CB05 with active chlorine chemistry, updated toluene mechanism | RACM with KPP (chem_opt = 105) | CB05, with updated toluene mechanism, precursors for VBS | CB05 with, updated toluene mechanism, precursors for VBS | CB05 with active chlorine chemistry | CB05 with active chlorine chemistry |
Aqueous-phase chemistry | AQChem | No aqueous phase chemistry | For sulfur | No aqueous phase chemistry | AQChem | AQChem | |
Photolysis scheme | JPROC | fTUV | 2D photolysis based on Hough (1988) [43] | 2D photolysis based on Hough (1988) [43] | fTUV | fTUV | |
Aerosol modules | Aero6 | MADE/SORGAM | 2-bin scheme | 2-bin scheme | MADE/VBS | MADE/VBS | |
Inorganic aerosol thermodynamic module | ISORROPIA-II | MADE | ISORROPIA-II | ISORROPIA-II | ISORROPIA-II | ISORROPIA-II | |
SOA module | Aero6 | SORGAM | VBS | VBS | VBS | VBS | |
Dry deposition | Wesely (1989) scheme | Wesely (1989) [44] scheme | Wesely (1989) [44] scheme | Wesely (1989) [44] scheme (a) | Wesely (1989) [44] scheme (b) | Wesely (1989) [44] scheme (b) | |
Wet deposition | Henry’s law (gas phase), scavenging rate (aerosol in cloud water) | No wet deposition | Henry’s law (gas phase), scavenging rate (aerosol in cloud water) | Henry’s law (gas phase), scavenging rate (aerosol in cloud water) | (c) | (c) | |
Emissions | Anthropogenic | 2008 NSW GMR Air Emissions Inventory (d) | 2008 NSW GMR Air Emissions Inventory (d) | 2008 NSW GMR Air Emissions Inventory | 2008 NSW GMR Air Emissions Inventory | 2008 NSW GMR Air Emissions Inventory (d) | 2008 NSW GMR Air Emissions Inventory (d) |
Biogenic | MEGAN | MEGAN | ABCGEM | ABCGEM | MEGAN | MEGAN | |
Sea salt | In-line | MADE/SORGAM | Clarke et al. (2003) [45] and Gong et al. (2003) [46] scheme | Clarke et al. (2003) [45] and Gong et al. (2003) [46] scheme | Gong et al. (1997) [47] scheme | Gong et al. (1997) [47] scheme | |
Dust | In-line (wind blown) | In-line | Lu and Shao (1999) [48] scheme | Lu and Shao (1999) [48] scheme | AER/AFWA | AER/AFWA | |
Fire | GFAS | ||||||
Initial and boundary conditions | Chem. ICs/BCs | MOZART | MOZART | Cape Grim observations and ACCESS_UKCA run | Cape Grim observations and ACCESS_UKCA run | CESM/CAM5 (1.2.2) (e) | CESM/CAM5 (1.2.2) (e) |
Campaign | Model | All Data | 10:00–16:00 Only | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± Sd (OBS) | Mean ± Sd (Model) | NMB % | NME % | r | Mean ± Sd (OBS) | Mean ± Sd (Model) | NMB | NME | ||
MUMBA | C-CTM | 18 ± 12 | 18 ± 11 | 1.1 | 35 | 0.72 | 27 ± 13 | 27 ± 12 | −2.3 | 27 |
O-CTM | 16 ± 9 | −7.7 | 34 | 0.71 | 25 ± 10 | −8.6 | 27 | |||
W-NC1 | 15 ± 12 | −13.6 | 37 | 0.73 | 25 ±12 | −7.5 | 27 | |||
W-NC2 | 16 ± 12 | −8.1 | 36 | 0.74 | 26 ± 12 | −2.4 | 27 | |||
W-UM1 | 17 ± 12 | −2.4 | 32 | 0.77 | 26 ± 13 | −5.7 | 26 | |||
W-UM2 | 16 ± 12 | −11.1 | 38 | 0.72 | 25 ± 14 | −8.5 | 29 | |||
SPS1 | C-CTM | 17 ± 11 | 18 ± 10 | 7.7 | 36 | 0.71 | 25 ± 10 | 27 ± 11 | 5.7 | 27 |
O-CTM | 16 ± 9 | −2.4 | 35 | 0.71 | 24 ± 9 | −5.4 | 24 | |||
W-NC1 | 16 ± 10 | −4.6 | 35 | 0.74 | 25 ± 10 | −3.4 | 25 | |||
W-NC2 | 16 ± 10 | −4.6 | 34 | 0.75 | 25 ± 9 | −3.5 | 24 | |||
W-UM1 | 18 ± 11 | 7.1 | 36 | 0.71 | 26 ±10 | 1.1 | 25 | |||
W-UM2 | 16 ± 12 | −2.5 | 39 | 0.72 | 25 ± 13 | −0.5 | 31 | |||
SPS2 | C-CTM | 13 ± 10 | 14 ± 9 | 8.9 | 49 | 0.65 | 22 ± 7 | 22 ± 7 | −0.2 | 30 |
O-CTM | 12 ± 7 | −3.2 | 50 | 0.64 | 17 ± 6 | −20.6 | 32 | |||
W-NC1 | 14 ± 9 | 6.7 | 46 | 0.67 | 22 ± 7 | 2.1 | 22 | |||
W-NC2 | 12 ±9 | −2.1 | 45 | 0.68 | 21 ± 6 | −5.1 | 23 | |||
W-UM1 | 17 ± 9 | 29 | 50 | 0.64 | 23 ± 6 | 4.2 | 23 | |||
W-UM2 | 14 ±8 | 7.8 | 52 | 0.63 | 21 ± 6 | −5.9 | 24 |
Campaign | Model | Daily Means | ||||
---|---|---|---|---|---|---|
Mean ± Sd (OBS) | Mean ± Sd (Model) | NMB % | NME % | r | ||
MUMBA | C-CTM | 7.3 ± 2.7 | 6.9 ± 2.8 | −5.6 | 30 | 0.48 |
O-CTM | 4.5 ± 2.0 | −39 | 40 | 0.72 | ||
W-NC1 | 4.1 ± 1.3 | −44 | 45 | 0.47 | ||
W-NC2 | 4.3 ± 1.3 | −42 | 43 | 0.48 | ||
W-UM1 | 4.6 ± 2.1 | −37 | 43 | 0.37 | ||
W-UM2 | 11.7 ± 4.6 | 59 | 63 | 0.45 | ||
SPS1 | C-CTM | 5.7 ± 2.3 | 6.3 ± 1.3 | 11 | 29 | 0.54 |
O-CTM | 4.8 ± 2.4 | −16 | 29 | 0.58 | ||
W-NC1 | 4.3 ± 1.1 | −25 | 34 | 0.43 | ||
W-NC2 | 4.3 ± 1.1 | −24 | 34 | 0.39 | ||
W-UM1 | 4.6 ± 3.4 | −18 | 48 | 0.32 | ||
W-UM2 | 11.1 ± 4.7 | 96 | 97 | 0.43 | ||
SPS2 | C-CTM | 5.3 ± 2.8 | 7.5 ± 3.5 | 45 | 55 | 0.67 |
O-CTM | 4.7 ± 3.1 | −8.0 | 30 | 0.79 | ||
W-NC1 | 13.9 ± 13.4 | 170 | 177 | 0.58 | ||
W-NC2 | 14.5 ± 13.9 | 180 | 186 | 0.57 | ||
W-UM1 | 7.2 ± 4.4 | 38 | 57 | 0.61 | ||
W-UM2 | 17.0 ± 9.6 | 227 | 230 | 0.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guérette, E.-A.; Chang, L.T.-C.; Cope, M.E.; Duc, H.N.; Emmerson, K.M.; Monk, K.; Rayner, P.J.; Scorgie, Y.; Silver, J.D.; Simmons, J.; et al. Evaluation of Regional Air Quality Models over Sydney, Australia: Part 2, Comparison of PM2.5 and Ozone. Atmosphere 2020, 11, 233. https://doi.org/10.3390/atmos11030233
Guérette E-A, Chang LT-C, Cope ME, Duc HN, Emmerson KM, Monk K, Rayner PJ, Scorgie Y, Silver JD, Simmons J, et al. Evaluation of Regional Air Quality Models over Sydney, Australia: Part 2, Comparison of PM2.5 and Ozone. Atmosphere. 2020; 11(3):233. https://doi.org/10.3390/atmos11030233
Chicago/Turabian StyleGuérette, Elise-Andrée, Lisa Tzu-Chi Chang, Martin E. Cope, Hiep N. Duc, Kathryn M. Emmerson, Khalia Monk, Peter J. Rayner, Yvonne Scorgie, Jeremy D. Silver, Jack Simmons, and et al. 2020. "Evaluation of Regional Air Quality Models over Sydney, Australia: Part 2, Comparison of PM2.5 and Ozone" Atmosphere 11, no. 3: 233. https://doi.org/10.3390/atmos11030233
APA StyleGuérette, E. -A., Chang, L. T. -C., Cope, M. E., Duc, H. N., Emmerson, K. M., Monk, K., Rayner, P. J., Scorgie, Y., Silver, J. D., Simmons, J., Trieu, T., Utembe, S. R., Zhang, Y., & Paton-Walsh, C. (2020). Evaluation of Regional Air Quality Models over Sydney, Australia: Part 2, Comparison of PM2.5 and Ozone. Atmosphere, 11(3), 233. https://doi.org/10.3390/atmos11030233