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Abstract: Accurate air quality modelling is an essential tool, both for strategic assessment (regulation
development for emission controls) and for short-term forecasting (enabling warnings to be issued to
protect vulnerable members of society when the pollution levels are predicted to be high). Model
intercomparison studies are a valuable support to this work, being useful for identifying any issues
with air quality models, and benchmarking their performance against international standards, thereby
increasing confidence in their predictions. This paper presents the results of a comparison study
of six chemical transport models which have been used to simulate short-term hourly to 24 hourly
concentrations of fine particulate matter less than and equal to 2.5 µm in diameter (PM2.5) and
ozone (O3) for Sydney, Australia. Model performance was evaluated by comparison to air quality
measurements made at 16 locations for O3 and 5 locations for PM2.5, during three time periods that
coincided with major atmospheric composition measurement campaigns in the region. These major
campaigns included daytime measurements of PM2.5 composition, and so model performance
for particulate sulfate (SO4

2−), nitrate (NO3
−), ammonium (NH4

+) and elemental carbon (EC) was
evaluated at one site per modelling period. Domain-wide performance of the models for hourly O3 was
good, with models meeting benchmark criteria and reproducing the observed O3 production regime
(based on the O3/NOx indicator) at 80% or more of the sites. Nevertheless, model performance was
worse at high (and low) O3 percentiles. Domain-wide model performance for 24 h average PM2.5 was
more variable, with a general tendency for the models to under-predict PM2.5 concentrations during
the summer and over-predict PM2.5 concentrations in the autumn. The modelling intercomparison
exercise has led to improvements in the implementation of these models for Sydney and has increased
confidence in their skill at reproducing observed atmospheric composition.
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1. Introduction

Air quality models are used by government authorities to undertake both short-term, and strategic
air quality forecasts. In support of this, scientists strive to improve the understanding of emissions and
chemical and physical processes in the atmosphere that influence the composition of the air that we
breathe [1]. In the region around Sydney, Australia, the two main atmospheric pollutants of concern
are ozone (O3) and particles with a diameter ≤ 2.5 µm (PM2.5) [2]. Air pollution is typically worse in
western Sydney [3] and may be further exacerbated by expected large population growth in the next
few years. It then follows that an improved understanding of the formation regimes for these two
pollutants is paramount to developing effective mitigation policies [4].

There have been significant recent research efforts undertaken to gather observational databases, with
the goal of improving photochemical O3 and PM2.5 modelling for air quality applications in Australia [5–7].
This has included modelling the air quality impacts from bushfires [8–10] and estimates of the health
benefits to be gained by air quality improvements [11]. Modelling comparison exercises are an excellent
way to assess the performance of air quality models and highlight any issues with the implementation
of the different models [12–14]. Such comparisons can be used to evaluate the models, determine the
accuracy of their predictions and ultimately build confidence in their performance, as demonstrated in
several recent model intercomparisons such as the Air Quality Model Evaluation International Initiative
(AQMEII) conducted in North America and Europe [14–18]. However, model intercomparison exercises
involve a large amount of effort, and are very time consuming, and thus such an intercomparison study
of hourly air quality models has not previously been undertaken in the Sydney region.

To address this gap, the Clean Air and Urban Landscape (CAUL) hub (funded by the Australian
Government’s Department of the Environment) set out to undertake an intercomparison of air quality
models over New South Wales that would test existing capabilities, identify any problems and
provide the necessary validation of models for the region. This project was designed to establish
robust air quality modelling capabilities, by building on the substantial efforts of recent years by the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the New South Wales
Department of Planning, Industry and Environment (DPIE), to improve the modelling of photochemical
O3 and secondary particle formation for air quality applications in the Sydney basin and surrounding
areas through the development of the Conformal Cubic Atmospheric Model-Chemical Transport
Model (CCAM-CTM) [5,19,20]. The modelling intercomparison tests the capabilities of six air quality
modelling systems, including the DPIE’s operational version of CCAM-CTM, against a number of
other state-of-the-science air quality models including different versions of the widely used Weather
Research and Forecasting with Chemistry (WRF-Chem) and Community Multi-Scale Air Quality
(CMAQ) models. The skill of each model is assessed by comparing their simulation of the atmosphere
against observations made from the DPIE’s network of air quality monitoring stations in the Sydney
basin during periods coinciding with three previous measurement campaigns:

1. Sydney Particle Study stage 1 (SPS1) which took place in Westmead (33.80◦ S, 151.0◦ E), Sydney
for ~4 weeks in summer from 5 February to 7 March 2011 [21,22];

2. Sydney Particle Study stage 2 (SPS2) which took place in Westmead (33.80◦ S, 151.0◦ E), Sydney
for ~4 weeks in autumn from 16 April to 14 May 2012 [22,23];

3. Measurements of Urban Marine and Biogenic Air (MUMBA) which took place at the University
of Wollongong’s campus east (34.40◦ S, 150.9◦ E), Wollongong for 8 weeks in summer from
21 December 2012 to 15 February 2013 [24–28].

The performance of the models in representing meteorological conditions during the campaigns
is presented in a separate paper [29], which showed:
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1. The models overestimated wind speeds, especially at night time;
2. Temperatures were well simulated, with the largest biases also seen overnight;
3. The lower atmosphere was drier in the models than actually observed;
4. Meso-scale meteorological features, such as sea breezes were reproduced to some extent in the

simulations [29].

Overall, the models generally performed within the recommended benchmark values for
meteorology, except at high (and low) percentiles, when the biases tended to be larger [29].

The model simulations used for the intercomparison exercise were subsequently used in a number
of additional studies, including benchmarking the performance of the DPIE’s operational model [30]
and using it to identify the major sources of O3 [31] and PM2.5 [32] in the greater Sydney region. Other
studies explored the role of extreme temperature days in driving O3 pollution events [33] and the
relative performance of the WRF-Chem model with and without coupling to the Regional Ocean Model
System [34,35].

In this paper, the performance of the models in representing ambient values of O3 and PM2.5

is evaluated. We first look at how the models reproduce the observed diurnal cycle in O3 across all
selected DPIE air quality monitoring sites. We then investigate the skill of the models at capturing
the dominant O3 formation regime (either limited by the availability of atmospheric volatile organic
compounds (VOC limited) or by the availability of atmospheric nitrogen oxides (NOx limited)) at each
air quality monitoring site. We also investigate the ability of the models at reproducing the timing and
location of maximum daily O3 values above 60 ppb. In addition, we assess the performance of the
models at simulating 24 h average PM2.5 concentrations at the DPIE air quality monitoring sites that
measured PM2.5 during the campaign periods. We also evaluate how well the models reproduce the
chemical composition of the inorganic PM2.5 fraction measured at the campaign sites.

2. Methods

2.1. Air Quality Modelling Systems

To simplify the presentation, each of the six modelling systems and their output will be referred to
by a short acronym. This intercomparison examined three simulations based on the WRF-Chem model
(W-UM2, W-NC1 and W-NC2), one simulation based on WRF-CMAQ (W-UM1) and two simulations
based on CCAM-CTM (C-CTM and O-CTM). WRF-Chem is an online coupled regional-scale model [36]
driven by the Advanced Research Weather Research and Forecasting (WRF) model [37]. WRF-Chem
offers many options for physics, chemistry, and aerosols. All three WRF-Chem simulations are based
on v3.7.1 of the model. However, W-NC1 and W-NC2 incorporate the developments described
in Wang et al. (2015) [38] and simulate additional aerosol direct, semi-direct, and indirect effects
that are not simulated in the other models. W-NC1 and W-NC2 use the same physics, chemistry,
and aerosol options, but W-NC2 is coupled with the Regional Ocean Modelling System (ROMS)
(WRF-Chem/ROMS) [39] and explicitly simulates air-sea interactions and sea-surface temperatures
that are not simulated in W-NC1 or other models in this comparison [34,35].

The CMAQ model is an open-source chemistry-transport model developed and maintained by the
US EPA [40]; W-UM1 used v5.0.2 of the model in an offline mode, driven by gridded meteorological
fields from WRF v3.6.1.

The CCAM-CTM is a 3D Eulerian model developed for Australian regional air quality
studies [19,41]. O-CTM is the operational version of the model run by the DPIE (previously NSW
OEH) in New South Wales, whereas C-CTM is run by CSIRO. Both C-CTM and O-CTM derive their
meteorology from the Cubic Conformal Atmospheric Model (CCAM; [42]). All information pertaining
to the configuration of the meteorological models can be found in the companion paper “Evaluation
of regional air quality models over Sydney, Australia: Part 1 Meteorological model comparison”
by Monk et al., 2019 [29]. Further details pertaining to the configuration of the chemical transport
modelling of each model run are presented in Table 1 and briefly described below.
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Table 1. Summary of the details of the six air quality modelling systems used in the intercomparison.

Parameter W-UM1 W-UM2 O-CTM C-CTM W-NC1 W-NC2

Research group Univ. melbourne Univ. melbourne DPIE CSIRO NCSU NCSU

Model
specifications

Met. model WRF WRF CCAM CCAM WRF WRF

Chem. model CMAQ WRF-Chem CSIRO-CTM CSIRO-CTM WRF-Chem WRF-Chem-ROMS

Met. model version 3.6.1 3.7.1 r−4271:4285M r−2796 3.7.1 3.7.1

Chem. model version 5.0.2 3.7.1 r−1057 r−1035 3.7.1 3.7.1

Domain

Nests 4 4 4 4 4 4

Horizontal res.
(each nest) (km) 81, 27,9,3 81, 27,9,3 80, 27,9,3 80, 27,9,3 81, 27,9,3 81, 27,9,3

Nx 67, 60, 84, 90 80, 73, 97, 103 75, 60, 60, 60 75, 60, 60, 60 79, 72, 96, 102 79, 72, 96, 102

Ny 57, 78, 84, 90 70, 91, 97, 103 65, 60, 60, 60 65, 60, 60, 60 69, 90, 96, 102 69, 90, 96, 102

Vertical layers 29 33 16 16 32 32

Height of first layer (m) 33.5 56 ~20 ~20 ~35 ~35

Chemical
parametisations

Gas-phase mechanism
CB05 with active chlorine

chemistry, updated
toluene mechanism

RACM with KPP
(chem_opt = 105)

CB05, with updated toluene
mechanism, precursors for VBS

CB05 with, updated toluene
mechanism, precursors for VBS

CB05 with active
chlorine chemistry

CB05 with active
chlorine chemistry

Aqueous-phase
chemistry AQChem No aqueous phase

chemistry For sulfur No aqueous phase chemistry AQChem AQChem

Photolysis scheme JPROC fTUV 2D photolysis based on
Hough (1988) [43]

2D photolysis based on
Hough (1988) [43] fTUV fTUV

Aerosol modules Aero6 MADE/SORGAM 2-bin scheme 2-bin scheme MADE/VBS MADE/VBS

Inorganic aerosol
thermodynamic module ISORROPIA-II MADE ISORROPIA-II ISORROPIA-II ISORROPIA-II ISORROPIA-II

SOA module Aero6 SORGAM VBS VBS VBS VBS

Dry deposition Wesely (1989) scheme Wesely (1989) [44]
scheme Wesely (1989) [44] scheme Wesely (1989) [44] scheme (a) Wesely (1989) [44]

scheme (b)
Wesely (1989) [44]

scheme (b)

Wet deposition
Henry’s law (gas phase),
scavenging rate (aerosol

in cloud water)
No wet deposition

Henry’s law (gas phase),
scavenging rate (aerosol in

cloud water)

Henry’s law (gas phase),
scavenging rate (aerosol in

cloud water)
(c) (c)
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Table 1. Cont.

Parameter W-UM1 W-UM2 O-CTM C-CTM W-NC1 W-NC2

Research group Univ. melbourne Univ. melbourne DPIE CSIRO NCSU NCSU

Emissions

Anthropogenic 2008 NSW GMR Air
Emissions Inventory (d)

2008 NSW GMR
Air Emissions
Inventory (d)

2008 NSW GMR Air
Emissions Inventory

2008 NSW GMR Air
Emissions Inventory

2008 NSW GMR
Air Emissions
Inventory (d)

2008 NSW GMR
Air Emissions
Inventory (d)

Biogenic MEGAN MEGAN ABCGEM ABCGEM MEGAN MEGAN

Sea salt In-line MADE/SORGAM Clarke et al. (2003) [45] and
Gong et al. (2003) [46] scheme

Clarke et al. (2003) [45] and
Gong et al. (2003) [46] scheme

Gong et al. (1997)
[47] scheme

Gong et al. (1997)
[47] scheme

Dust In-line (wind blown) In-line Lu and Shao (1999) [48] scheme Lu and Shao (1999) [48] scheme AER/AFWA AER/AFWA

Fire GFAS

Initial and
boundary
conditions

Chem. ICs/BCs MOZART MOZART Cape Grim observations and
ACCESS_UKCA run

Cape Grim observations and
ACCESS_UKCA run

CESM/CAM5
(1.2.2) (e)

CESM/CAM5
(1.2.2) (e)

(a) Also refers to EPA (1999) [49]. (b) For all species except for sulfate; sulfate dry deposition based on Erisman et al. (1994) [50]; aerosol settling velocity and deposition based on
Slinn and Slinn (1980) [51] and Pleim et al. (1984) [52]. (c) In-cloud wet removal of dissolved trace gases and the cloud-borne aerosol particles collected by rain, graupel, and snow
(Grell et al., 2005) [36]. Below-cloud wet removal of aerosol particles by impaction scavenging via convective Brownian diffusion and gravitational or inertial capture, and irreversible
uptake of H2SO4, HNO3, HCl, NH3, and simultaneous reactive uptake of SO2, H2O2 (Easter, 2004) [53]. (d) EDGAR-HTAP (Janssens-Maenhout et al., 2012) [54] emissions used for
domains not covered by Emissions Inventory. Volatile organic compound (VOC) speciation from the Intergovernmental Panel on Climate Change (IPCC) (2001) [55]. (e) with boundary
conditions (BCONs) of O3, NO2, CO, and HCHO constrained based on satellite observations, and those for PM species were constrained based on MODIS AOD.
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2.2. Air Quality Model Configuration

All models were run over four nested domains at horizontal grid resolutions of 81 (or 80 km for
C-CTM and O-CTM), 27, 9 and 3 km. The outer-most domain (with the coarsest resolution) covers the
whole of Australia whereas the inner-most domain covers the greater Sydney area. Figure 1 in [29]
shows a map of the modelling domains. Although the models have consistent horizontal grids, they
differ in their vertical resolution (16–35 layers) and in the height of their first model layer (~20–~56 m).

All models except W-UM2 used gas-phase chemistry mechanisms based on variations of CB05 [56].
W-NC1 and W-NC2 used a version with additional chlorine chemistry [57], whereas W-UM1, O-CTM
and C-CTM used variants that included updated toluene chemistry [58,59]. W-UM2 used the Regional
Atmospheric Chemistry Mechanism (RACM) of Stockwell et al. [60] with the Kinetic Preprocessor
(KPP). This option does not permit the inclusion of the full WRF-Chem aqueous-phase chemistry,
including aerosol–cloud interactions and wet scavenging [61].

All other models except C-CTM included aqueous chemistry: O-CTM included aqueous chemistry
for sulfur [19] and W-NC1, W-NC2 and W-UM1 used the AQChem aqueous chemistry scheme from
Sarwar et al. (2011) [62] implemented by Kazil et al. (2014) [63].

All three WRF-Chem simulations used the Fast Troposphere Ultraviolet-Visible (FTUV) photolysis
model [64], whereas W-UM1 used clear-sky photolysis rates calculated offline using JPROC [65] and
stored in look-up tables, and O-CTM and C-CTM used a 2D photolysis schemes based on Hough [43].
W-UM1, W-UM2, W-NC1 and W-NC2 used modal representations of particle size distribution, whereas
C-CTM and O-CTM used a 2-bin (PM2.5 and PM10) sectional representation.

All models used a volatility basis set (VBS; [66–68] approach for SOA, except W-UM2 which used
the Secondary Organic Aerosol Module (SORGAM; [69]) and W-UM1 which used the CMAQ Aero6
module [70,71]. All models incorporate version II of the ISORROPIA thermodynamic equilibrium
module [72] for the treatment of inorganic aerosol, except W-UM2, which used the MADE scheme [73].

All models run in the experiment used the scheme described by Wesely [44] to handle dry
deposition. W-NC1 and W-NC2 used the Wesely scheme for all species except sulfate. Sulfate dry
deposition for these models were based on Erisman et al. [50], and aerosol settling velocity and
deposition were based on Slinn and Slinn [51] and Pleim et al. [52]. The O-CTM/C-CTM resistive dry
deposition scheme also refer to EPA (1999) [49].

W-UM2 did not include a wet deposition scheme. C-CTM and O-CTM used Henry’s law for gas
phase deposition and the scavenging rate for aerosol in cloud water. W-NC1, W-NC2 and W-UM1
took in-cloud wet removal of dissolved trace gases and the cloud-borne aerosol particles collected by
hydrometeors [36,74]. Below-cloud wet removal of aerosol particles by impaction, scavenging via
convective Brownian diffusion and gravitational or inertial capture, irreversible uptake of H2SO4,
HNO3, HCl, NH3, and simultaneous reactive uptake of SO2, H2O2 were also included [53].

2.3. Emissions

All models were coupled to the 2008 anthropogenic emissions inventory from the NSW EPA [75].
The inventory covers the NSW Greater Metropolitan Region (GMR), a region covering over 57,000 km2

that includes Sydney, Newcastle and Wollongong. The inventory includes anthropogenic emissions of
over 850 substances (including common pollutants such as CO, NOx, PM10, PM2.5, SO2, VOCs and
greenhouse gases) from domestic, commercial and industrial sources, as well as on- and off- road
sources. Emissions from licensed point sources are assigned to map coordinates whereas domestic,
fugitive commercial and industrial, off- and on- road emissions are assigned to 1 km × 1 km grid
cells. The emissions are then calculated for each month, day of week and hour of day, so that two
sets of diurnal cycles are available for each month (weekday and weekend) for each 1 km × 1 km
grid cell. Figure 1 shows the emission maps of anthropogenic NOx and PM2.5, re-gridded to the
3 km model resolution, at 10:00 on a weekday in April. Although all models used the NSW EPA
inventory, there were some slight differences in its implementation. Firstly, the inventory data had to
be interpreted and made into model-ready files. This process was done separately for each modelling
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system type (WRF-Chem, CMAQ, CTM). Also, C-CTM and O-CTM use Heating Degree Days (HDD)
to normalise and scale domestic wood burning emissions, which results in a more realistic temporal
release of woodburning emissions [6]. Finally, W-NC1, W-NC2, W-UM1 and W-UM2 used EDGAR
emissions [54] in the parts of the domains not covered by the NSW EPA inventory.
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Figure 1. Example of NOx emissions (upper panel) and PM2.5 emissions (lower panel) from the 2008
New South Wales (NSW) emissions inventory. Emissions are re-gridded to the 3 km model resolution
and are for 10:00 on a weekday in April. Locations of the Department of Planning, Industry and
Environment (DPIE) air quality monitoring stations measuring O3 are shown as black dots in the upper
panel, and those measuring PM2.5 are shown as black dots in the lower panel.
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VOC speciation in the WRF-Chem models was based on speciation in the “Prep_chem WRFChem”
emission utility, from the Intergovernmental Panel on Climate Change (IPCC) speciation for VOCs [55].
All models applied PM (PM2.5/10 and OC/EC) speciation developed by CSIRO. Biogenic emissions
were generated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN
v2.1) model [76,77] (W-UM1, W-UM2, W-NC1, W-NC2) or the Australian Biogenic Canopy and Grass
Emissions Model (ABCGEM) [78] (C-CTM, O-CTM). Emissions of sea-salt aerosol and wind-blown
dust were calculated online within the models using the parameterisations listed in Table 1 [45,46].
C-CTM also included fire emissions from GFAS [79], speciated according to Akagi et al. [80].

2.4. Initial and Boundary Conditions

The meteorological initial and boundary conditions (ICONs and BCONs) for W-NC1 and W-NC2
are based on the National Center for Environmental Prediction Final Analysis (NCEP-FNL) [81].
The chemical ICONs and BCONs are based on the results from a global Earth system model, the NCSU’s
version of the Community Earth System Model (CESM_NCSU) v1.2.2 [82–85]. The BCONs of CO, NO2,
HCHO, O3, and PM species are constrained based on satellite retrievals. A more detailed description
can be found in Zhang et al., 2019 [34].

Gas phase BCONs for ozone, methane, carbon monoxide, oxides of nitrogen, and seven VOC
species including formaldehyde and xylene were taken from Cape Grim measurements [86] in the
C-CTM model, while those for the aerosol phase were taken from a global ACCESS-UKCA model
run [87]. The meteorological ICONs and BCONs for O-CTM are ERA-Interim global atmospheric
reanalysis. The chemical ICONs and BCONs used by O-CTM are from the ACCESS-UKCA model [87],
while W-UM1 and W-UM2 used boundary conditions from MOZART [88].

2.5. Observations

Models provided hourly output of surface trace gases and particulates for three time periods
corresponding to the intensive measurement campaigns (SPS1, SPS2 and MUMBA) described earlier.
The observations made at the campaign sites are supplemented by those of the DPIE monitoring
network. The DPIE operates a network of air quality stations throughout the state of New South Wales.
These stations provide measurements of pollutants including O3, NOx, PM2.5 and PM10. Measurements
are continuously uploaded to a publicly accessible web page [89]. For this model evaluation, data from
sixteen stations located in the greater Sydney region were selected. During the campaign periods, all
sixteen stations reported hourly averages for O3, NOx and PM10 (see upper panel of Figure 1). Five of
the stations also reported PM2.5 (see lower panel of Figure 1 for their location). Model performance
was evaluated separately for each campaign period.

3. Results and Discussion of Model Evaluation for O3

3.1. Domain Average Model Performance for Hourly O3

The Australian government specifies an hourly standard of ≤ 100 ppb and a 4 hourly standard of
≤ 80 ppb for O3 in the National Environment Pollution Measure for Ambient Air Quality (NEPM) [90].
Analyses presented in this section use the hourly data averaged across all sixteen measurement sites
reporting O3 unless otherwise stated. The 4 hourly analysis is given in the Appendix A. The upper
panel of Figure 2 shows the composite diurnal cycles of observed and modelled O3 (averaging all the
data from 16 sites from each hour of the day across every day of the campaign). The lower panel of
Figure 2 shows the Taylor diagrams for average performance across the 16 sites for O3.
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Figure 2. Composite diurnal cycles for observed and modelled O3 during each campaign (upper panel)
and Taylor diagrams for each campaign period (lower panel).

The models generally capture the observed O3 diurnal cycle very well, especially in summer
(MUMBA and SPS1). All models overestimate night-time O3 in autumn (SPS2), and O-CTM also
underestimates afternoon O3 values during SPS2. For most models, the night-time overestimation of O3

is likely caused by the underestimation of night-time NOx (see Figure A1), leading to insufficient titration.
The Taylor diagrams in the lower panel of Figure 2 summarise model performance: The Pearson’s
correlation coefficient (r) between modelled and observed hourly variables is shown on the outside
arc; the normalised standard deviation of the hourly observations is indicated as a dashed radial line
(marked as ‘observed’ on the x axis); and the centred root mean squared error (RMSE) is indicated
by concentric dashed grey lines emanating from the observed value. Overall the performance of the
models is similar, in terms of correlation and RMSE, with a little more scatter in the standard deviation.
All models underestimate the observed variability in O3 during the SPS2 campaign.

Detailed performance statistics for each model for each campaign are given in Table 2. Absolute
mean bias values of each model from the observations of O3 are small (mean: ~1 ppb; max 4 ppb),
but because mean O3 levels are low, this translates to relatively high normalized mean bias (max 29%).
A recent paper by Emery et al. [91] recommended goal and criteria values for the performance of
photochemical models to predict O3 amounts of < ± 5% (goal) and < ± 15% (criteria) for normalized
mean bias (NMB) < 15% (goal) and < 25% (criteria) for normalized mean error (NME); and r > 0.75
(goal) and > 0.5 (criteria) for correlation.
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Table 2. Summary statistics for O3 are listed for each model and each campaign including mean and
standard deviation (Sd); normalized mean bias (NMB); normalized mean error (NME) and correlation
coefficient (r). Values for all the data are shown as well as for daytime data only (from 10:00 to
16:00 only).

Campaign Model All Data 10:00–16:00 Only

Mean ± Sd
(OBS)

Mean ± Sd
(Model)

NMB
%

NME
% r Mean ± Sd

(OBS)
Mean ± Sd

(Model) NMB NME

MUMBA

C-CTM

18 ± 12

18 ± 11 1.1 35 0.72

27 ± 13

27 ± 12 −2.3 27
O-CTM 16 ± 9 −7.7 34 0.71 25 ± 10 −8.6 27
W-NC1 15 ± 12 −13.6 37 0.73 25 ±12 −7.5 27
W-NC2 16 ± 12 −8.1 36 0.74 26 ± 12 −2.4 27
W-UM1 17 ± 12 −2.4 32 0.77 26 ± 13 −5.7 26
W-UM2 16 ± 12 −11.1 38 0.72 25 ± 14 −8.5 29

SPS1

C-CTM

17 ± 11

18 ± 10 7.7 36 0.71

25 ± 10

27 ± 11 5.7 27
O-CTM 16 ± 9 −2.4 35 0.71 24 ± 9 −5.4 24
W-NC1 16 ± 10 −4.6 35 0.74 25 ± 10 −3.4 25
W-NC2 16 ± 10 −4.6 34 0.75 25 ± 9 −3.5 24
W-UM1 18 ± 11 7.1 36 0.71 26 ±10 1.1 25
W-UM2 16 ± 12 −2.5 39 0.72 25 ± 13 −0.5 31

SPS2

C-CTM

13 ± 10

14 ± 9 8.9 49 0.65

22 ± 7

22 ± 7 −0.2 30
O-CTM 12 ± 7 −3.2 50 0.64 17 ± 6 −20.6 32
W-NC1 14 ± 9 6.7 46 0.67 22 ± 7 2.1 22
W-NC2 12 ±9 −2.1 45 0.68 21 ± 6 −5.1 23
W-UM1 17 ± 9 29 50 0.64 23 ± 6 4.2 23
W-UM2 14 ±8 7.8 52 0.63 21 ± 6 −5.9 24

For correlation, all models meet the criteria, and approach or reach the goal (> 0.75) for the summer
campaigns. All models meet NMB criteria (< ± 15%) for all campaigns, except W-UM1 for SPS2. None
of the models meet the criteria for NME, although the low mean O3 amounts of < 20 ppb, make this
a more difficult challenge than elsewhere in the world where O3 amounts are typically significantly
higher [14].

Emery et al. [91] recommended using a cut off of 40 ppb for the calculation of NMB and NME
as a way to demarcate between nocturnal O3 destruction (for which model performance is usually
poor) and daytime O3 production. In this study, this cut off is not applicable because it would exclude
over 95% of observed values. Model performance is instead evaluated explicitly over O3 production
hours (10:00–16:00 local time). All models meet the NMB criteria over this subset of hours, except
O-CTM during SPS2. NME values are generally improved over this subset of hours, especially for
SPS2. W-NC1, W-NC2 and W-UM1 meet the NME criteria (< 25%) for SPS1 and SPS2.

Figure 3 shows quantile–quantile plots comparing modelled and observed hourly O3 distributions
for each campaign. In quantile–quantile plots the comparison is not a function of timing, but simply plots
each quantile of model values against the corresponding quantile of observed values. Figure 3 shows
that the models generally reproduce the observed O3 distribution. However, there are deviations both at
low quantiles (especially during SPS2) and high quantiles. For example, during MUMBA, C-CTM and
O-CTM underestimated the higher hourly values, whereas W-UM1 and W-UM2 overestimated them.

When the model data are paired with the coincident observations, so that the timing in the models
is important (Figure 4), all models overestimate low O3 values and underestimate peak O3 values.
This indicates that the models do not capture the timing of low and high O3 events. Similar results
were noted in an evaluation of operational online-coupled regional air quality models over Europe
and North America as part of the second phase of the Air Quality Model Evaluation International
Initiative (AQMEII) [14].
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3.2. Domain Average Model Performance for 4 Hourly Average O3

Since the NEPM also includes a 4 hourly standard of less than 80 ppb for O3 [90], the models were
also evaluated for their performance for 4 h rolling means of O3. See Table A2 for statistical results and
Figure A1 for Taylor diagrams and mean bias for paired model/observed O3 4 hourly average values.
The performance of the models for 4 h rolling means is slightly better than for hourly O3. All models
met the criteria for NMB. NME is smaller for all models and all campaigns. Correlation coefficients are
improved for all models except W-NC1 and W-NC2. All models underestimate the observed variation
in amplitude in 4 h rolling O3 means, and do not capture the timing of high O3 events (see Figure A1).
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3.3. Site-Specific Model Performance for Hourly O3

It is also useful to visualize model performance across the domain, to determine whether model
performance is better (or worse) in some regions than others. The statistics listed in Table 2 reflect
the average performance of the models across the 16 air quality monitoring sites. The maps in
Figure 5 illustrate how model performance for correlation varies across the domain during each of the
campaigns. Sites at which the goal is met (r > 0.75) are shown as triangles. Sites at which the goal is
not met, but the correlation criteria (r > 0.5) is exceeded are shown as diamonds.
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values at the 16 DPIE air quality monitoring stations during the MUMBA, SPS1 and SPS2 campaigns.
Sites at which the goal is met (r > 0.75) are shown as triangles. Sites at which the goal is not met, but the
correlation criteria (r > 0.5) is exceeded are shown as diamonds.

The map indicates that the performance of the models is generally better in the northwest,
with worse performance along the southern coast especially during SPS2.

3.4. Model Performance for Prediction of O3 Pollution Events

An additional performance benchmark is whether models can accurately predict when high O3

events (e.g., exceedances) occurred. This can be explored in terms of categorical statistics. In this
analysis, we investigated the probability of detection (POD) of an O3 event and the false alarm ratio
(FAR) of each model for various O3 thresholds. The POD is the ratio of the number of correctly
predicted events over the number of observed events. The false alarm ratio is the number of incorrectly
predicted events over the total number of predicted events.

Two thresholds were selected for the test: observed daily maximum O3 > 60 ppb and observed
daily maximum O3 above 40 ppb (95th percentile of observed hourly O3 values during the summer
campaigns). We choose these thresholds to calculate the metrics instead of the regulatory standards
because there was no exceedance of the hourly O3 standard (100 ppb) during the modelled periods.
Using daily maximum values instead of hourly values relaxes the test somewhat, as the exact timing of
the high O3 event does not need to be captured by the models.
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The POD for daily maximum O3 values > 60 ppb at any given site was generally poor (0%–67%);
somewhat better (25%–80%) for prediction of a sub-regional event (e.g., Sydney East, Sydney
North-West, etc.); and better still for prediction of an event somewhere within the domain (28–93%).
Relaxation of the geographical location of the predicted event from site specific, to regional and further
to domain wide, greatly improved the number of false alarms, with the FAR decreasing each time the
test was relaxed (false alarm ratio, domain wide: 10%–40%; region: 32%–73%; site: 40%–100%).

These results are not notably better than those found during a previous study that assessed the
POD of O3 events above 60 ppb in Melbourne and Sydney from December to March 2001–2002 and
2002–2003 using an earlier air quality model developed by CSIRO [92]. This earlier study found PODs
of 23%–28% at individual sites; 21%–66% at the sub-regional scale and from 53% to 89%, at the domain
scale [92]. It should be noted that there were significantly fewer peak ozone days in 2010–2011 (SPS1)
and 2012–2013 (MUMBA) than there were during the periods of reference (2001–2002 and 2002–2003),
and so the sample size in this current analysis is limited.

The results for prediction of O3 events in this study are better when using a threshold of 40 ppb,
with:

1. Site-specific aggregated results: POD of 50%–83 % and FAR of 14%–46%
2. Region-specific aggregated results: POD of 62%–86 % and FAR of 12%–35%
3. Domain-wide results: POD of 67%–93 % and FAR of 4%–21%

These results are depicted graphically in Figure 6, with maps of the number of observed (left most
column) and modelled events for daily maximum O3 > 60 ppb (top panel) and > 40 ppb (bottom panel)
for SPS1 and MUMBA. SPS2 is not shown due to a lack of events to display.
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3.5. Model Performance for Prediction of O3 Production Regime

In this section, we evaluate whether the models reproduce the dominant observed O3 production
regime at each site, using O3/NOX as the indicator [93]. This is important for guiding policies for
reducing O3 concentrations as it dictates whether a reduction in VOCs or NOX will result in an increase
or decrease in O3 in the region. The O3/NOx ratio was calculated daily using values from 10:00–16:00
local time. At some stations during some of the campaigns, the NOx measurements were of too
poor quality (with negative mixing ratios being reported) to reliably determine the O3/NOx ratio.
In these cases, the ratio was deemed unavailable at the site. A ratio < 15 was taken to indicate a
VOC-limited O3 production regime whereas values > 15 indicate a NOx-limited regime [94], although
the threshold values may vary as discussed in Zhang et al. [95]. The proportion of days with O3/NOx

< 15 (VOC-limited regime) was compiled for the observations and the models for each campaign and
the results are shown in Figure 7.
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During the SPS2 campaign, 14 out of the 16 sites experienced VOC-limited conditions (O3/NOx

< 15) on a majority of days. The models reproduce this pattern with a high level of accuracy, with all
models predicting the right dominant regime at 13 or more of the sites. During SPS1, the O3 regime
indicator is available for 14 of the 16 sites. Of these, 11 experienced VOC-limited conditions on a
majority of days. The models capture this pattern, with accurate predictions at 12 or more of the sites.

During MUMBA, the O3 regime indicator is available for 15 of the 16 sites. Of these, 11 experienced
VOC-limited conditions on a majority of days. Again, the models reproduce this pattern accurately,
with all models predicting the right regime at 12 or more of the 15 sites.

This means that overall, modelled O3 should respond in the appropriate way to increases/decreases
in VOCs or NOx.

4. Results and Discussion of Model Evaluation for PM2.5

4.1. Domain Average Model Performance for Daily PM2.5

The Australian government specifies a daily standard of ≤ 25 µgm−3 and an annual standard of
≤ 8 µgm−3 for PM2.5 in the NEPM [90]. Model simulated PM2.5 is evaluated against daily averaged
observations at five sites for the summer (MUMBA, SPS1) periods and four sites for the autumn period
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(SPS2). These sites used for evaluating PM2.5 are all the available air quality monitoring sites that were
making measurements of PM2.5 in the modelled domain during the respective campaigns.

Composite time series of daily observed and modelled PM2.5 and Taylor diagrams of model
performance are shown for each campaign period in the two panels of Figure 8 and model performance
statistics are given in Table 3. The plots show how model performance for PM2.5 is more variable than
for O3. W-UM2 in particular is biased high during all campaigns, with much larger variability of
PM2.5 concentrations than seen in the observations. The low observed mean concentrations of PM2.5

(e.g., 5.3 µgm−3 during SPS2) mean that relatively small absolute differences become large normalized
biases and errors, nevertheless model performance is generally much better for SPS1, during which the
mean concentration of PM2.5 was only marginally higher at 5.7 µgm−3. One factor driving this worse
performance for SPS2 is a much greater positive bias in W-NC1, W-NC2 and W-UM2 towards the latter
end of SPS2 (see upper panel of Figure 8). Some of the bias may come from these models not applying
scaling based on HDD to woodburning emissions; however, W-UM1 also does not use scaling but
exhibit similar bias to C-CTM, which uses scaling. The use of EDGAR as a complementary inventory
can also be dismissed as the cause of the gross overestimation by W-NC1, W-NC2 and W-UM2 since
W-UM1 also uses EDGAR. Finally, there could have been errors in the preparation of the inventory files
for May for the WRF-Chem modelling systems. Indeed, performance for PM2.5 for all three models
(W-NC1, W-NC2 and W-UM2) is much better in April than in May (e.g., NMB for W-NC1 is 292% in
May but 68% in April).Atmosphere 2019, 10, x 11 of 31 
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Emery et al. [91] recommended goal and criteria values for the performance of photochemical
models to predict PM2.5 amounts of < ± 10% (goal) and < ± 30% (criteria) for NMB; < 35% (goal) and
< 50% (criteria) for NME; and r > 0.7 (goal) and > 0.4 (criteria) for correlation.
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Table 3. Summary statistics for daily PM2.5 concentrations in µgm−3 are listed for each model and each
campaign including mean and standard deviation (Sd); normalized mean bias (NMB); normalized
mean error (NME) and correlation coefficient (r).

Campaign Model Daily Means

Mean ± Sd
(OBS)

Mean ± Sd
(Model)

NMB
%

NME
% r

MUMBA

C-CTM

7.3 ± 2.7

6.9 ± 2.8 −5.6 30 0.48
O-CTM 4.5 ± 2.0 −39 40 0.72
W-NC1 4.1 ± 1.3 −44 45 0.47
W-NC2 4.3 ± 1.3 −42 43 0.48
W-UM1 4.6 ± 2.1 −37 43 0.37
W-UM2 11.7 ± 4.6 59 63 0.45

SPS1

C-CTM

5.7 ± 2.3

6.3 ± 1.3 11 29 0.54
O-CTM 4.8 ± 2.4 −16 29 0.58
W-NC1 4.3 ± 1.1 −25 34 0.43
W-NC2 4.3 ± 1.1 −24 34 0.39
W-UM1 4.6 ± 3.4 −18 48 0.32
W-UM2 11.1 ± 4.7 96 97 0.43

SPS2

C-CTM

5.3 ± 2.8

7.5 ± 3.5 45 55 0.67
O-CTM 4.7 ± 3.1 −8.0 30 0.79
W-NC1 13.9 ± 13.4 170 177 0.58
W-NC2 14.5 ± 13.9 180 186 0.57
W-UM1 7.2 ± 4.4 38 57 0.61
W-UM2 17.0 ± 9.6 227 230 0.51

Overall, model performance for PM2.5 is worse than for O3, but all models except W-UM2 meet
the criteria (< 50%) for NME in summer (SPS1 and MUMBA), with some models meeting the goal
(< 35%), especially during SPS1. All models meet the correlation criteria (> 0.4) during SPS2, and most
do during the other campaigns. O-CTM meets the correlation goal (> 0.7) for SPS2 and MUMBA.
The best performance for NMB is seen during SPS1, with all models except W-UM2 meeting the criteria
(< ± 30%). All models fail to meet that criteria for the other two campaigns, except O-CTM during
SPS2 and C-CTM during MUMBA; both models meet the goal (< ± 10%) in these instances.

Although not part of the regulatory framework for PM2.5 in Australia, we also looked at the
performance of the models for hourly PM2.5. These results are presented briefly in the Appendix A:
Figure A2 shows Taylor diagrams and composite diurnal cycles for observed and modelled hourly
average PM2.5 concentration during each campaign. Model performance for hourly average PM2.5 is
consistently worse than for daily average PM2.5.

Figure 9 shows the quantile–quantile plots for domain averaged daily PM2.5. This comparison
removes the requirement for accurate timing, by plotting each quantile of model values against
the corresponding quantile of observed values. C-CTM and O-CTM reproduce the observed PM2.5

distribution quite well except for some low biases at the highest concentrations during MUMBA
(O-CTM) and SPS1 (C-CTM). W-UM1 overestimates the higher PM2.5 concentrations during SPS1 and
SPS2 and underestimates them during MUMBA. W-NC1 and W-NC2 both underestimate the higher
PM2.5 concentrations in summer (MUMBA and SPS1) but overestimate PM2.5 concentrations at all
quantiles during SPS2. Finally, W-UM2 shows high biases across all three campaign periods.

4.2. Site-Specific Model Performance for Daily PM2.5

The statistics listed in Table 3 reflect the average performance of the models across the five (or 4,
for SPS2) air quality monitoring sites. The maps in Figure 10 illustrate how model performance for
NMB varies across the domain. Sites at which the NMB criteria is exceeded (NMB < ± 30%) are shown
as diamonds. Sites at which the goal is met (NMB < ± 10%) are shown as triangles. Figure 10 reveals
that the poor performance during SPS2 is driven mostly by the very large biases seen at two of the sites
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for W-NC1 and W-NC2, and at three of the sites for W-UM2. This highlights the problem of only having
a small number of observational sites available to evaluate the models against in an intercomparison
such as this. We note that the DPIE now measures PM2.5 at all its monitoring sites, which will enable a
much more detailed regional evaluation of model performance in future.
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4.3. Model Performance for PM2.5 Inorganic Composition

During each intensive measurement campaign (MUMBA, SPS1 and SPS2), measurements of the
chemical composition of the inorganic fraction of PM2.5 were made. PM2.5 was collected onto filters
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from 05:00 to 10:00 (from here on, denoted as morning or AM filters) and 11:00 to 19:00 (from here on,
denoted as afternoon or PM filters) local time each day [21–23]. This allows for a limited (one site per
campaign) evaluation of the performance of the models in predicting inorganic PM2.5 composition,
and to gain insight as to whether any particular fraction is contributing more to the model bias.

The model output was subsampled to match the timing of the observations. Figure 11
shows the median inorganic PM2.5 concentration (in µgm−3) from AM and PM filters across each
campaign, coloured by its composite species: elemental carbon, sulfate (SO4

2), nitrate (NO3
-) and

ammonium (NH4
+).
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The figure shows that sulfate dominates the inorganic PM2.5 during the summer campaigns
(especially during MUMBA) and elemental carbon dominates in the autumn campaign (SPS2).
Elemental carbon constitutes a significantly higher fraction of PM2.5 on the AM filters, than the PM
filters in all campaigns. Nitrate and ammonium typically make up only a small fraction of total
inorganic PM2.5, except for the PM filters in SPS1 where these two species together make up about one
third of the total mass of PM2.5. The models reproduce this median distribution fairly well; however,
it is obvious from Figure 11 that W-UM2 overestimates NH4

+. W-UM2 also predicts that very little
ammonia (NH3) remains in the gas phase (see Figure A4 for a box and whisker plot showing modelled
and observed NH3 values at the campaign sites). W-UM2 is the only model to use the MADE scheme
instead of the ISORROPIA thermodynamic equilibrium module. Observed NH4

+ levels are low on
average (< 0.35 ug m−3), and modelled values are within a factor of 2 of the observed values 11%–45%
of the time. There is little nitrate observed (< 0.7 ug m−3 on average) and modelled values are within a
factor of 2 of observed values 15%–51% of the time. The models generally reproduce the observed
difference in EC between the AM and the PM filters, but tend to underestimate EC in general. Modelled
EC values are within a factor of 2 of the observed values 9 to 32% of the time in summer (MUMBA and
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SPS1), and 48%–77% of the time in autumn (SPS2). Most models capture the sulfate contribution well,
with 36%–83% of modelled values being within a factor of 2 of the observed values.

Inorganic PM2.5 species contribute ~60% of the total mass of PM2.5 during SPS1 and SPS2 and
only 30% during MUMBA. This difference is probably linked to the location of the campaign sites:
both SPS1 and SPS2 took place in Westmead in western Sydney where MUMBA took place in coastal
Wollongong. The rest of the PM2.5 mass likely comes from sea salt, dust and organic carbon (both
primary and secondary). A more comprehensive evaluation would need to include these additional
species. Most of the models underestimate total inorganic PM2.5 loading in summer, irrespective of
campaign site, which may contribute to the underestimation of total PM2.5 mass by most models seen
in Table 3 for MUMBA and SPS1. Figure 11 also indicates that the overestimation in total PM2.5 seen
in most models during SPS2 is not due to a gross overestimation of the inorganic fraction; however,
the analysis presented in Figure 11 only covers daytime, whereas the worse overestimation of PM2.5

occurs overnight (see Figure A3).

5. Summary and Conclusions

This paper presents the results of an intercomparison study to test the performance of six air
quality modelling systems in predicting O3 and PM2.5 concentrations in Sydney and the surrounding
metropolitan areas. Model performance for O3 was evaluated against measurements at 16 air quality
monitoring stations, whilst observations of PM2.5 were only available from five stations (four during
SPS2). Overall domain-wide hourly O3 predictions by the models were accurate, and the observed
O3 production regime (based on the O3/NOx indicator) reproduced at 80% or more of the air quality
monitoring sites. The models generally capture the observed O3 diurnal cycle very well, especially
in summer. The models also generally met benchmark criteria for correlation (of greater than 0.5)
and NMB (of less than 15%) as proposed by Emery et al. [91], despite overestimation of the lowest
and underestimation of the highest observed hourly O3 values. Model performance was better in the
northwest, with poorer performance along the southern coast.

The probability of detection of O3 events was better for a threshold of 40 ppb than for a threshold
of 60 ppb. For both thresholds, the performance of the models improved (with the probability of
detection increasing and the false alarm ratio decreasing) each time the geographical location criteria of
the predicted event were relaxed from site specific, to regional, to domain wide. Further improvements
in modelling systems are necessary to provide more accurate site-specific O3 forecasts, including
advances in the inventory of precursor emissions.

Domain-wide model performance for daily PM2.5 was variable, with most models underestimating
summer and overestimating autumn PM2.5 concentrations. All models met the criteria for correlation
(> 0.4) during the autumn campaign and most did during the summer campaigns. The benchmark
criteria for NMB (< 30%) was met by only one model during MUMBA (C-CTM) and SPS2 (O-CTM),
but by most models during SPS1. Analysis of the composition of the inorganic fraction of PM2.5

showed that sulfate dominated in summer campaigns and elemental carbon dominated in the autumn
campaign, with higher amounts of elemental carbon in the mornings. The models reproduced the
dominant sulfate contribution, underestimated the morning elemental carbon and performed variably
for nitrate and ammonium.

The relatively low pollution levels for O3 and PM2.5 in Sydney mean that a small absolute bias
translates into a relatively large normalized bias, making the benchmark values set by Emery et al. [91]
especially challenging. The small number of monitoring sites reporting PM2.5 at the time of the
campaigns is an additional challenge for the evaluation of the performance of the models for PM2.5.
Nevertheless, the modelling comparison exercise described in this paper has produced improvements in
the implementation of these six models for New South Wales, benchmarked their performance against
international standards and thereby increased confidence in their ability to simulate atmospheric
composition within the greater Sydney region.
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Appendix A

The appendix contains:

1. Supplementary information about the meteorological setup of the models (see Table A1)
2. Analysis of the performance of the models for NOx, including composite diurnal cycles for

observed and modelled hourly average NOx concentration in ppb and Taylor diagrams for each
campaign period (see Figure A1).

3. Additional analysis of the performance of the models for O3 on a 4 hourly basis rather than the
1 hourly basis presented in the main manuscript, including statistic (see Table A2) and Taylor
diagrams and mean bias for paired model/observed (see Figure A2)

4. Additional analysis of the performance of the models for hourly average PM2.5, including
composite diurnal cycles for observed and modelled hourly average PM2.5 concentration in
µgm−3 and Taylor diagrams from each campaign period (see Figure A3).

5. Analysis of the performance of the models for ammonia, in the form of a box and whisker plot
(see Figure A4).
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Table A1. Overview of the configuration of the meteorological models—reproduced from the companion paper “Evaluation of Regional Air Quality Models over
Sydney and Australia: Part 1—Meteorological Model Comparison” [29].

Model Identifier
Parameter W-UM1 W-UM2 W-A11 O-CTM C-CTM W-NC1 W-NC2

Research group Univ. melbourne Univ. melbourne ANSTO NSW OEH CSIRO NCSU NCSU

Model specifications

Met. model WRF WRF WRF CCAM CCAM WRF WRF

Chem. model CMAQ WRF-Chem WRF-Chem with
simplified Radon only CSIRO-CTM CSIRO-CTM WRF-Chem WRF-Chem-ROMS

Met model version 3.6.1 3.7.1 3.7.1 r−3019 r−2796 3.7.1 3.7.1

Domain

Nx 80,73,97,103 80,73,97,103 80, 73, 97, 103 75, 60, 60, 60 88, 88, 88, 88 79, 72, 96, 102 79, 72, 96, 102

Ny 70,91,97,103 70,91.97.103 70, 91, 97, 103 65, 60, 60, 60 88, 88, 88, 88 69, 90, 96, 102 69, 90, 96, 102

Vertical layers 33 33 50 35 35 32 32

Height of first
layer (m) 33.5 56 19 10 20 35 35

Initial and
Boundary conditions

Met input/BCs ERA Interim ERA Interim ERA Interim ERA Interim ERA Interim NCEP/FNL NCEP/FNL

Topography/Land use
Geoscience Australia

DEM for inner domain,
USGS elsewhere

Geoscience Australia
DEM for inner domain.

USGS elsewhere

Geoscience Australia
DEM for inner domain,

USGS elsewhere.
MODIS land use

MODIS MODIS USGS USGS

SST High-res SST analysis
(RTG_SST)

High-res SST analysis
(RTG_SST)

High-res SST analysis
(RTG_SST) SST from ERA Interim SSTs from ERA Interim High-res SST

analysis (RTG_SST) Simulated by ROMS

Integration 24 h simulations, each
with 12 h spin-up number

Continuous with 2D
spin up

Continuous with 10 d
spin up

Continuous with 1 mth
spin up

Continuous with 1 mth
spin up

Continuous with 8
d spin up

Continuous with 8 d
spin up

Data assimilation Grid-nudging outer
domain above the PBL

Grid-nudging outer
domain above the PBL

Spectral nudging in
domain 1 above the
PBL (scale-selective

relaxation to analysis)

Scale-selective filter to
nudge towards the
ERA-Interim data

Scale-selective filter to
nudge towards the
ERA-Interim data

Gridded analysis
nudging above the

PBL

Gridded analysis
nudging above the PBL

Parameterisations

Microphysics Morrison LIN WSM6 Prognostic condensate
scheme

Prognostic condensate
scheme Morrison Morrison

LW radiation RRTMG RRTMG RRTMG GFDL GFDL RRTMG RRTMG

SW radiation RRTMG GSFC RRTMG GFDL GFDL RRTMG RRTMG

Land surface NOAH NOAH NOAH Kowalczyk scheme Kowalczyk scheme NOAH NOAH

PBL MYJ YSU MYJ Local Richardson number
and non-local stability

Local Richardson number
and non-local stability YSU YSU

UCM 3-category UCM NOAH UCM Single layer UCM Town Energy
budget approach

Town Energy
budget approach Single layer UCM Single layer UCM

Convection G3 (domains 1–3, off for
domain 4) G3 G3 Mass-flux closure Mass-flux closure MSKF MSKF

Aerosol feedbacks No No No Prognostic aerosols with
direct and indirect effects

Prognostic aerosols with
direct and indirect effects Yes Yes

Cloud feedbacks No No No Yes Yes Yes Yes
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Table A2. Summary statistics for O3 4 hourly average values are listed for each model and each
campaign including mean and standard deviation (Sd); normalized mean bias (NMB); normalized
mean error (NME) and correlation coefficient (r).

Campaign Model 4 Hourly Rolling Means

Mean ± Sd
(OBS)

Mean ± Sd
(Model)

NMB
%

NME
% r

MUMBA

C-CTM

18 ± 11

17 ± 10 −6.2 29 0.79
O-CTM 17 ± 10 −5.0 31 0.79
W-NC1 16 ± 10 −6.9 33 0.72
W-NC2 17 ± 10 −6.4 31 0.75
W-UM1 16 ± 10 −7.8 28 0.80
W-UM2 16 ± 11 −8.6 28 0.81

SPS1

C-CTM

17 ± 10

17 ± 9 2.0 30 0.77
O-CTM 17 ± 9 2.6 34 0.71
W-NC1 16 ± 9 −0.8 34 0.71
W-NC2 17 ± 9 −0.2 33 0.73
W-UM1 16 ± 9 −1.1 28 0.80
W-UM2 16 ± 9 −1.1 28 0.80

SPS2

C-CTM

13 ± 9

14 ± 8 13.1 43 0.69
O-CTM 14 ± 7 10.6 45 0.65
W-NC1 13 ± 8 2.5 44 0.65
W-NC2 13 ±7 2.7 44 0.65
W-UM1 14 ± 7 7.5 39 0.72
W-UM2 14 ±8 10.3 42 0.70
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Figure A4. Box and whisker plots showing observed and modelled ammonia (NH3) at each campaign
site. The black dots are the average values, the box marks the first and third quartiles and the whiskers
extend up to 1.5 length of the box. Outliers are open circles. No observations are available for MUMBA
and no output is available from W-UM1.
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