Influence of Quasi-Periodic Oscillation of Atmospheric Variables on Radiation Fog over A Mountainous Region of Korea
Abstract
:1. Introduction
2. Observations and Methods
2.1. Observation Site and Instrumentation
2.2. Fog Microphysics
2.3. Analysis of Kelvin–Helmholtz Instability (KHI)
3. Results
3.1. Overview of the Fog Cases
3.2. Results of Wavelet Transform Analysis
3.3. Results Related to KHI
3.3.1. Representative KHI event (Case 4)
3.3.2. Non-KHI event (Case 6)
3.3.3. Statistical analysis
3.4. Fog Evolution Affected by KHI
4. Discussion
5. Summary and Conclusions
- (1)
- For five fog cases, KHI might affect their development. This is shown by and log() time series that showed periodicity almost simultaneously when the N2 decreases and the squared increases (not shown). These cases are classified as Type 1. The Type 2 cases are the ones that do not show such features (not shown).
- (2)
- The average wind speeds for the Type 1 cases are larger than those for the Type 2 cases. These results are in reasonable agreement with the results of LES and WRF models (Maronga and Bosveld, 2017; Bergot, 2013; Conrick et al., 2018 [9,16,49]) in the sense that moderate wind speed, causing wind shear to increase, is favorable to generate KHI.
- (3)
- The Type 1 cases are characterized by increase in wind speed before the onset of fog. Apparently, reduction caused by shear-induced mixing is negligible because large-scale wind field is solid enough to overcome such a setback. The dominant wind direction is westerly in the Type 1 cases. In the meantime, wind is calm and there is no tendency for a dominant wind direction in the Type 2 cases.
- (4)
- The Type 1 cases last approximately for three to ten hours and are more enduring than the Type 2 cases. However, most cases began to dissipate around sunrise (~ 6:00 KST). Although the Type 1 cases occur about two hours earlier on average, the number of fog cases is insufficient to extract statistically significant feature of KHI. Therefore, more fog cases are needed to estimate how much KHI effects on the fog lifetime.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.; Gharabaghi, B.; et al. A Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [Google Scholar] [CrossRef]
- Roach, W.T. On some quasi-periodic oscillations observed during a field investigation of radiation fog. Q. J. R. Meteorol. Soc. 1976, 102, 355–359. [Google Scholar] [CrossRef]
- Duynkerke, P.G. Observation of a quasi-periodic oscillation due to gravity waves in a shallow radiation fog. Q. J. R. Meteorol. Soc. 1991, 117, 1207–1224. [Google Scholar] [CrossRef]
- Terradellas, E.; Ferreres, E.; Soler, M.R. Analysis of turbulence in fog episodes. Adv. Sci. Res. 2008, 2, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Ferrier, B.S. Asymptotic analysis of equilibrium in radiation fog. J. Appl. Meteorol. Climatol. 2008, 47, 1704–1722. [Google Scholar] [CrossRef]
- Ye, X.; Wu, B.; Zhang, H. The turbulent structure and transport in fog layers observed over the Tianjin area. Atmos. Res. 2015, 153, 217–234. [Google Scholar] [CrossRef]
- Degefie, D.T.; El-Madany, T.S.; Hejkal, J.; Held, M.; Dupont, J.C.; Haeffelin, M.; Klemm, O. Microphysics and energy and water fluxes of various fog types at SIRTA, France. Atmos. Res. 2015, 151, 162–175. [Google Scholar] [CrossRef]
- Maronga, B.; Bosveld, F.C. Key parameters for the life cycle of nocturnal radiation fog: A comprehensive large-eddy simulation study. Q. J. R. Meteorol. Soc. 2017, 143, 2463–2480. [Google Scholar] [CrossRef]
- Gerber, H.E. Microstructure of a Radiation Fog. J. Atmos. Sci. 1981, 38, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, E.D. Planetary boundary layer structure and air mass transport during the International Arctic Ocean Expedition 1991. Tellus Ser. B Chem. Phys. Meteorol. 1996, 48, 178–196. [Google Scholar] [CrossRef]
- Nilsson, E.D.; Bigg, E.K. Influences on formation and dissipation of high arctic fogs during summer and autumn and their interaction with aerosol. Tellus Ser. B Chem. Phys. Meteorol. 1996, 48, 234–253. [Google Scholar] [CrossRef]
- Uematsu, A.; Hashiguchi, H.; Yamamoto, M.K.; Dhaka, S.K.; Fukao, S. Influence of gravity waves on fog structure revealed by a millimeter-wave scanning Doppler radar. J. Geophys. Res. Atmos. 2007, 112, 1–10. [Google Scholar] [CrossRef]
- Hang, C.; Nadeau, D.F.; Gultepe, I.; Hoch, S.W.; Román-Cascón, C.; Pryor, K.; Fernando, H.J.S.; Creegan, E.D.; Leo, L.S.; Silver, Z.; et al. A Case Study of the Mechanisms Modulating the Evolution of Valley Fog. Pure Appl. Geophys. 2016, 173, 3011–3030. [Google Scholar] [CrossRef]
- Nakanishi, M. Large-eddy simulation of radiation fog. Bound. Layer Meteorol. 2000, 94, 461–493. [Google Scholar] [CrossRef]
- Bergot, T. Small-scale structure of radiation fog: A large-eddy simulation study. Q. J. R. Meteorol. Soc. 2013, 139, 1099–1112. [Google Scholar] [CrossRef]
- Haeffelin, M.; Bergot, T.; Elias, T.; Tardif, R.; Carrer, D.; Chazette, P.; Colomb, M.; Drobinski, P.; Dupont, E.; Dupont, J.C.; et al. PARISFOG: Shedding new light on fog physical processes. Bull. Am. Meteorol. Soc. 2010, 91, 767–783. [Google Scholar] [CrossRef] [Green Version]
- Song, J.I.; Yum, S.S.; Gultepe, I.; Chang, K.H.; Kim, B.G. Development of a new visibility parameterization based on the measurement of fog microphysics at a mountain site in Korea. Atmos. Res. 2019, 229, 115–126. [Google Scholar] [CrossRef]
- Guyot, G.; Gourbeyre, C.; Febvre, G.; Shcherbakov, V.; Burnet, F.; Dupont, J.C.; Sellegri, K.; Jourdan, O. Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory, France. Atmos. Meas. Tech. 2015, 8, 4347–4367. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Zhou, B.; Milbrandt, J.; Bott, A.; Li, Y.; Heymsfield, A.J.; Ferrier, B.; Ware, R.; Pavolonis, M.; Kuhn, T.; et al. A review on ice fog measurements and modeling. Atmos. Res. 2015, 151, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Vaisala. Present Weather Detector PWD22 User’S Guide; Vaisala Oyj: Helsinki, Finland, 2004; p. 25. [Google Scholar]
- Stull, R. Meteorology for Scientists and Engineers, 3rd ed.; The University of British Columbia: Vancouver, BC, Canada, 2011; pp. 119–142. [Google Scholar]
- Lalas, D.P.; Einaudi, F. On the Characteristics of Gravity Waves Geneated by Atmospheric Shear Layers. J. Atmos. Sci. 1976, 33, 1248–1259. [Google Scholar] [CrossRef] [Green Version]
- Durran, D.R.; Klemp, J.B. On the effects of moisture on the Brunt-Vaisala frequency. J. Atmos. Sci. 1982, 39, 2152–2158. [Google Scholar] [CrossRef]
- Wilson, R.; Luce, H.; Hashiguchi, H.; Shiotani, M.; Dalaudier, F. On the effect of moisture on the detection of tropospheric turbulence from in situ measurements. Atmos. Meas. Tech. 2013, 6, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Nappo, C.J.; Mahrt, L.; Belušic, D.; Grisogono, B.; Stauffer, D.R.; Pulido, M.; Staquet, C.; Jiang, Q.; Pouquet, A.; et al. Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys. 2015, 53, 956–993. [Google Scholar] [CrossRef]
- Monti, P.; Fernando, H.J.S.; Princevac, M.; Chan, W.C.; Kowalewski, T.A.; Pardyjak, E.R. Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope. J. Atmos. Sci. 2002, 59, 2513–2534. [Google Scholar] [CrossRef]
- Glickman, T.S. 2000: Glossary of Meteorology, 2nd ed.; Am. Meteorol. Soc.: Boston, MA, USA, 2000; p. 565. [Google Scholar]
- Gultepe, I.; Kuhn, T.; Pavolonis, M.; Calvert, C.; Gurka, J.; Heymsfield, A.J.; Liu, P.S.K.; Zhou, B.; Ware, R.; Ferrier, B.; et al. Ice fog in arctic during fram-ice fog project aviation and nowcasting applications. Bull. Am. Meteorol. Soc. 2014, 95, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Fernando, H.J.S.; Pardyjak, E.R.; Hoch, S.W.; Silver, Z.; Creegan, E.; Leo, L.S.; Pu, Z.; De Wekker, S.F.J.; Hang, C. An Overview of the Materhorn Fog Project: Observations and Predictability. Pure Appl. Geophys. 2016, 173, 2983–3010. [Google Scholar] [CrossRef]
- Niu, S.; Lu, C.; Liu, Y.; Zhao, L.; Lü, J.; Yang, J. Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study. Adv. Atmos. Sci. 2010, 27, 1259–1275. [Google Scholar] [CrossRef]
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Liu, Y.; Niu, S.; Zhao, L.; Yu, H.; Cheng, M. Examination of microphysical relationships and corresponding microphysical processes in warm fogs. Acta Meteorol. Sin. 2013, 27, 832–848. [Google Scholar] [CrossRef]
- Gultepe, I.; Pearson, G.; Milbrandt, J.A.; Hansen, B.; Platnick, S.; Taylor, P.; Gordon, M.; Oakley, J.P.; Cober, S.G. The Fog Remote Sensing and Modeling Field Project. Bull. Am. Meteorol. Soc. 2009, 90, 341–360. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G.; Hudak, D.; Nissen, R.; Strapp, J.W. Dynamical and microphysical characteristics of Arctic clouds during BASE. J. Clim. 2000, 13, 1225–1254. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 97, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Rees, J.M.; Staszewski, W.J.; Winkler, J.R. Case study of a wave event in the stable atmospheric boundary layer overlaying an Antarctic Ice Shelf using the orthogonal wavelet transform. Dyn. Atmos. Ocean 2001, 34, 245–261. [Google Scholar] [CrossRef]
- Terradellas, E.; Soler, M.R.; Ferreres, E.; Bravo, M. Analysis of oscillations in the stable atmospheric boundary layer using wavelet methods. Bound. Layer Meteorol. 2005, 114, 489–518. [Google Scholar] [CrossRef]
- Viana, S.; Terradellas, E.; Yague, C.; Maqueda, G. Analysis of the different regimes of atmospheric turbulence observed during a single night. Nuovo Cim. Della Soc. Ital. Fis. C 2008, 31, 723–742. [Google Scholar]
- Román-Cascón, C.; Yagüe, C.; Mahrt, L.; Sastre, M.; Steeneveld, G.-J.; Pardyjak, E.; van de Boer, A.; Hartogensis, O. Interactions among drainage flows, gravity waves and turbulence: A BLLAST case study. Atmos. Chem. Phys. 2015, 15, 9031–9047. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 524–534. [Google Scholar]
- Fukao, S.; Luce, H.; Mega, T.; Yamamoto, M.K. Extensive studies of large-amplitude Kelvin-Helmholtz billows in the lower atmosphere with VHF middle and upper atmosphere radar. Q. J. R. Meteorol. Soc. 2011, 137, 1019–1041. [Google Scholar] [CrossRef]
- Mazoyer, M.; Lac, C.; Thouron, O.; Bergot, T.; Masson, V.; Musson-Genon, L. Large eddy simulation of radiation fog: Impact of dynamics on the fog life cycle. Atmos. Chem. Phys. 2017, 17, 13017–13035. [Google Scholar] [CrossRef] [Green Version]
- Porson, A.; Price, J.; Lock, A.; Clark, P. Radiation Fog. Part II: Large-Eddy Simulations in Very Stable Conditions. Bound. Layer Meteorol. 2011, 139, 193–224. [Google Scholar] [CrossRef]
- Davis, P.A.; Peltier, W.R. Resonant Parallel Shear Instability in the Stably Stratified Planetary Boundary Layer. J. Atmos. Sci. 1976, 33, 1287–1300. [Google Scholar] [CrossRef] [Green Version]
- Duynkerke, P.G. Radiation Fog: A Comparison of Model Simulation with Detailed Observations. Mon. Weather Rev. 1991, 119, 324–341. [Google Scholar] [CrossRef] [Green Version]
- Jemmett-Smith, B.C.; Ross, A.N.; Sheridan, P.F.; Hughes, J.K.; Vosper, S.B. A case-study of cold-air pool evolution in hilly terrain using field measurements from COLPEX. Q. J. R. Meteorol. Soc. 2019, 145, 1290–1306. [Google Scholar] [CrossRef] [Green Version]
- Terradellas, E.; Morales, G.; Cuxart, J.; Yagüe, C. Wavelet methods: Application to the study of the stable atmospheric boundary layer under non-stationary conditions. Dyn. Atmos. Ocean. 2001, 34, 225–244. [Google Scholar] [CrossRef]
- Conrick, R.; Mass, C.F.; Zhong, Q. Simulated Kelvin-Helmholtz waves over terrain and their microphysical implications. J. Atmos. Sci. 2018, 75, 2787–2800. [Google Scholar] [CrossRef]
- Garratt, J.R. Review: The atmospheric boundary layer. Earth Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Smyth, W.D.; Moum, J.N. Ocean Mixing by Kelvin-Helmholtz Instability. Oceanography 2012, 25, 140–149. [Google Scholar] [CrossRef]
- Gultepe, I.; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B. A Meteorological Supersite for Aviation and Cold Weather Applications. Pure Appl. Geophys. 2019, 176, 1977–2015. [Google Scholar] [CrossRef]
Instrument | Mounting Height | Company | Measurements | Range and Resolution |
---|---|---|---|---|
LPM (Laser Precipitation Monitor) | 2.3 m | Thiessen | Rainfall intensity and phase state from fall speed | Resolution of rainfall intensity: 0.001 mm h−1 |
WXT-520 (Weather Transmitter) | 3, 5.2 m | Vaisala | Temperature Relative humidity Pressure Wind speed Wind direction | Resolution: 0.1 °C, 1 %, 0.1 hPa, 0.1 m s−1, 1° |
PWD-52 (Present Weather Detector) | 2.3 m | Vaisala | Visibility | Range: 10 m-35 km Resolution: 1 m |
IR sensor | 2.3 m | Campbell Scientific | Surface temperature | Resolution: 0.05 °C |
FM-120 (Fog Monitor) | 2 m | Droplet Measurement Technologies | Droplet size, liquid water content (LWC), and Nd | Range: 2–50 µm, 30 bins |
PWD-22 | 3.7 m | Vaisala | Visibility | Range: 10 m-20 km Resolution: 1 m |
3D-Sonic Anemometer | 3, 6 m | Campbell Scientific CSAT | 3-D wind components Sonic virtual temperature (Ts) | Resolution: u, v: 1 mm s−1 w: 0.5 mm s−1 Ts: 0.025 °C |
Case | Formation (KST) | Dissipation (KST) | Duration (h) | Wind Speed (m s−1) | Dominant Wind Direction | Mean Temperature (°C) | LWC (g m−3) | Nd (cm−3) | |
---|---|---|---|---|---|---|---|---|---|
1 | 04/10/17 04:09 | 04/10/17 05:46 | 1.5 | 0.8 | NE | 8.6 | 0.028 | 5.6 | 292 |
2 | 05/10/17 02:00 | 05/10/17 08:24 | 5.0 | 2.1 | W | 5.9 | 0.009 | 8.6 | 26 |
3 | 07/10/17 23:38 | 08/10/17 09:15 | 9.4 | 2.6 | W | 12.1 | 0.010 | 8.0 | 39 |
4 | 08/10/17 23:25 | 09/10/17 06:00 | 6.6 | 3.3 | W | 12.0 | 0.011 | 5.9 | 102 |
5 | 22/10/17 04:42 | 22/10/17 07:53 | 3.1 | 1.7 | W | 9.4 | 0.033 | 5.4 | 353 |
6 | 28/10/17 04:11 | 28/10/17 07:26 | 3.1 | 0.9 | N | 9.6 | 0.012 | 5.3 | 161 |
7 | 28/10/17 23:03 | 29/10/17 08:57 | 9.5 | 2.3 | W | 7.2 | 0.012 | 8.8 | 31 |
8 | 26/02/18 01:36 | 26/02/18 02:47 | 1.1 | 1.2 | N | −6.5 | 0.021 | 7.5 | 106 |
9 | 28/02/18 02:39 | 28/02/18 06:23 | 3.4 | 0.9 | N | −0.3 | 0.037 | 7.8 | 151 |
Squared Wind Shear | Squared BVF | Wind Speed | |||||||
---|---|---|---|---|---|---|---|---|---|
Case | Slope (s−2 h−1) | R2 | p-Value | Slope (×10−3 s−2 h−1) | R2 | p-Value | Slope (m s−1 h−1) | R2 | p-Value |
Type 1 | |||||||||
2 | 0.27 | 0.88 | 0.000 | −5.7 | 0.67 | 0.013 | 0.54 | 0.64 | 0.000 |
3 | 0.27 | 0.65 | 0.003 | −2.7 | 0.86 | 0.000 | 0.56 | 0.31 | 0.000 |
4 | 0.14 | 0.50 | 0.000 | −2.3 | 0.67 | 0.000 | 0.37 | 0.58 | 0.000 |
5 | 0.06 | 0.33 | 0.035 | −2.7 | 0.82 | 0.000 | 0.15 | 0.24 | 0.000 |
7 | 0.15 | 0.86 | 0.000 | −2.4 | 0.57 | 0.000 | 0.36 | 0.68 | 0.000 |
Type 2 | |||||||||
1 | 0.03 | 0.37 | 0.001 | −0.3 | 0.37 | 0.001 | 0.03 | 0.05 | 0.000 |
6 | 0.00 | 0.00 | 0.731 | −0.7 | 0.21 | 0.006 | −0.01 | 0.00 | 0.342 |
8 | 0.02 | 0.03 | 0.674 | −1.8 | 0.21 | 0.221 | −0.36 | 0.26 | 0.000 |
9 | 0.02 | 0.10 | 0.038 | −0.3 | 0.38 | 0.000 | −0.05 | 0.07 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
La, I.; Yum, S.S.; Gultepe, I.; Yeom, J.M.; Song, J.I.; Cha, J.W. Influence of Quasi-Periodic Oscillation of Atmospheric Variables on Radiation Fog over A Mountainous Region of Korea. Atmosphere 2020, 11, 230. https://doi.org/10.3390/atmos11030230
La I, Yum SS, Gultepe I, Yeom JM, Song JI, Cha JW. Influence of Quasi-Periodic Oscillation of Atmospheric Variables on Radiation Fog over A Mountainous Region of Korea. Atmosphere. 2020; 11(3):230. https://doi.org/10.3390/atmos11030230
Chicago/Turabian StyleLa, Inyeob, Seong Soo Yum, Ismail Gultepe, Jae Min Yeom, Jae In Song, and Joo Wan Cha. 2020. "Influence of Quasi-Periodic Oscillation of Atmospheric Variables on Radiation Fog over A Mountainous Region of Korea" Atmosphere 11, no. 3: 230. https://doi.org/10.3390/atmos11030230
APA StyleLa, I., Yum, S. S., Gultepe, I., Yeom, J. M., Song, J. I., & Cha, J. W. (2020). Influence of Quasi-Periodic Oscillation of Atmospheric Variables on Radiation Fog over A Mountainous Region of Korea. Atmosphere, 11(3), 230. https://doi.org/10.3390/atmos11030230