# Pollution Transport Patterns Obtained Through Generalized Lagrangian Coherent Structures

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Air Quality Model

#### 2.2. Species-Weighted Column-Averaged Generalized Velocity Field

#### 2.3. Eulerian-Lagrangian Analysis

#### 2.4. Computation of Effective Velocity Gradient and Instantaneous Attraction Rate

#### 2.5. Computation of the Lagrangian Trajectory-Averaged Attraction Rate

#### 2.6. Correlation of Column-Averaged Transport Structures with Wind-Only Structures at a Fixed Pressure Layer

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

AGL | Above Ground Level |

CMAQ | Community Multiscale Air Quality |

FTLE | Finite-Time Lyapunov Exponent |

LCS | Lagrangian Coherent Structure |

OECS | Objective Eulerian Coherent Structure |

WRF | Weather Research and Forecasting |

## References

- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev.
**2006**, 59, 51–77. [Google Scholar] [CrossRef] - Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3, NCAR Technical Note; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc.
**2015**, 96, 2059–2077. [Google Scholar] [CrossRef] - BozorgMagham, A.E.; Ross, S.D.; Schmale, D.G., III. Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis. Phys. D Nonlinear Phenom.
**2013**, 258, 47–60. [Google Scholar] [CrossRef] - BozorgMagham, A.E.; Ross, S.D.; Schmale, D.G., III. Local finite-time Lyapunov exponent, local sampling and probabilistic source and destination regions. Nonlinear Process. Geophys.
**2015**, 22, 663–677. [Google Scholar] [CrossRef] - Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, S.; Singh, P.K.; Singh, S.; Govindan, V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Ann. Rev. Phytopathol.
**2011**, 49, 465–481. [Google Scholar] [CrossRef] [Green Version] - Peacock, T.; Haller, G. Lagrangian coherent structures: The hidden skeleton of fluid flows. Phys. Today
**2013**, 66, 41. [Google Scholar] [CrossRef] [Green Version] - Haller, G. Lagrangian coherent structures. Ann. Rev. Fluid Mech.
**2015**, 47, 137–162. [Google Scholar] [CrossRef] [Green Version] - Schmale, D.G.; Ross, S.D. Highways in the sky: Scales of atmospheric transport of plant pathogens. Ann. Rev. Phytopathol.
**2015**, 53, 591–611. [Google Scholar] [CrossRef] [Green Version] - Shadden, S.C.; Lekien, F.; Marsden, J.E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D Nonlinear Phenom.
**2005**, 212, 271–304. [Google Scholar] [CrossRef] - Lekien, F.; Ross, S.D. The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos Interdiscip. J. Nonlinear Sci.
**2010**, 20, 017505. [Google Scholar] [CrossRef] [Green Version] - Serra, M.; Sathe, P.; Beron-Vera, F.; Haller, G. Uncovering the edge of the polar vortex. J. Atmos. Sci.
**2017**, 74, 3871–3885. [Google Scholar] [CrossRef] - Olascoaga, M.J.; Haller, G. Forecasting sudden changes in environmental pollution patterns. Proc. Natl. Acad. Sci. USA
**2012**, 109, 4738–4743. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mezić, I.; Loire, S.; Fonoberov, V.A.; Hogan, P. A new mixing diagnostic and Gulf oil spill movement. Science
**2010**, 330, 486–489. [Google Scholar] [CrossRef] [PubMed] - Rypina, I.I.; Jayne, S.R.; Yoshida, S.; Macdonald, A.M.; Douglass, E.M.; Buesseler, K.O. Short-term dispersal of Fukushima-derived radionuclides off Japan: Modeling efforts and model-data intercomparison. Biogeosciences
**2013**, 10, 4973–4990. [Google Scholar] [CrossRef] [Green Version] - Tallapragada, P.; Ross, S.D.; Schmale, D.G., III. Lagrangian coherent structures are associated with fluctuations in airborne microbial populations. Chaos Interdiscip. J. Nonlinear Sci.
**2011**, 21, 033122. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Garaboa-Paz, D.; Eiras-Barca, J.; Huhn, F.; Pérez-Muñuzuri, V. Lagrangian coherent structures along atmospheric rivers. Chaos Interdiscip. J. Nonlinear Sci.
**2015**, 25, 063105. [Google Scholar] [CrossRef] - Draxler, R.R.; Hess, G. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag.
**1998**, 47, 295–308. [Google Scholar] - Haller, G. Lagrangian coherent structures from approximate velocity data. Phys. Fluids
**2002**, 14, 1851–1861. [Google Scholar] [CrossRef] - Shadden, S.C.; Lekien, F.; Paduan, J.D.; Chavez, F.P.; Marsden, J.E. The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep Sea Res. Part II Top. Stud. Oceanogr.
**2009**, 56, 161–172. [Google Scholar] [CrossRef] - Ramp, S.R.; Davis, R.E.; Leonard, N.E.; Shulman, I.; Chao, Y.; Robinson, A.; Marsden, J.; Lermusiaux, P.; Fratantoni, D.; Paduan, J.D.; et al. Preparing to predict: the second autonomous ocean sampling network (AOSN-II) experiment in the Monterey Bay. Deep Sea Res. Part II Top. Stud. Oceanogr.
**2009**, 56, 68–86. [Google Scholar] [CrossRef] - Bowman, K.P.; Pan, L.L.; Campos, T.; Gao, R. Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research. J. Geophys. Res.
**2007**, 112, D18111. [Google Scholar] [CrossRef] [Green Version] - Joseph, B.; Legras, B. Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J. Atmos. Sci.
**2002**, 59, 1198–1212. [Google Scholar] [CrossRef] [Green Version] - Tang, W.; Chan, P.W.; Haller, G. Lagrangian coherent structure analysis of terminal winds detected by LiDAR. Part I: Turbulence structures. J. Appl. Meteorol. Climatol.
**2011**, 50, 325–338. [Google Scholar] [CrossRef] [Green Version] - Peng, J.; Peterson, R. Attracting structures in volcanic ash transport. Atmos. Environ.
**2012**, 48, 230–239. [Google Scholar] [CrossRef] - Balasuriya, S.; Ouellette, N.T.; Rypina, I.I. Generalized Lagrangian coherent structures. Phys. D Nonlinear Phenom.
**2018**, 372, 31–51. [Google Scholar] [CrossRef] [Green Version] - Wyat Appel, K.; Napelenok, S.; Hogrefe, C.; Pouliot, G.; Foley, K.M.; Roselle, S.J.; Pleim, J.E.; Bash, J.; Pye, H.O.; Heath, N.; et al. Overview and Evaluation of the Community Multiscale Air Quality (CMAQ) Modeling System Version 5.2. In Air Pollution Modeling and its Application XXV; Mensink, C., Kallos, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 69–73. [Google Scholar]
- US EPA Office of Research and Development. CMAQ v 5.2. 2017. Available online: https://zenodo.org/record/1167892/export/hx#.XjkqBCMRXcc (accessed on 21 January 2020).
- Appel, K.W.; Roselle, S.J.; Gilliam, R.C.; Pleim, J.E. Sensitivity of the Community Multiscale Air Quality (CMAQ) model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers. Geosci. Model Dev.
**2010**, 3, 169–188. [Google Scholar] [CrossRef] [Green Version] - Ran, L.; Pleim, J.; Gilliam, R.; Binkowski, F.S.; Hogrefe, C.; Band, L. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo. J. Geophys. Res. Atmos.
**2016**, 121, 2393–2415. [Google Scholar] [CrossRef] [Green Version] - Foroutan, H.; Young, J.; Napelenok, S.; Ran, L.; Appel, K.W.; Gilliam, R.C.; Pleim, J.E. Development and evaluation of a physics-based windblown dust emission scheme implemented in the CMAQ modeling system. J. Adv. Model. Earth Syst.
**2017**, 9, 585–608. [Google Scholar] [CrossRef] [Green Version] - Pleim, J.E.; Bash, J.O.; Walker, J.T.; Cooter, E.J. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models. J. Geophys. Res. Atmos.
**2013**, 118, 3794–3806. [Google Scholar] [CrossRef] - Pye, H.O.T.; Zuend, A.; Fry, J.L.; Isaacman-VanWertz, G.; Capps, S.L.; Appel, K.W.; Foroutan, H.; Xu, L.; Ng, N.L.; Goldstein, A.H. Coupling of organic and inorganic aerosol systems and the effect on gas–particle partitioning in the southeastern US. Atmos. Chem. Phys.
**2018**, 18, 357–370. [Google Scholar] [CrossRef] [Green Version] - Qin, M.; Yu, H.; Hu, Y.; Russell, A.G.; Odman, M.T.; Doty, K.; Pour-Biazar, A.; McNider, R.T.; Knipping, E. Improving ozone simulations in the Great Lakes Region: The role of emissions, chemistry, and dry deposition. Atmos. Environ.
**2019**, 202, 167–179. [Google Scholar] [CrossRef] - Serra, M.; Haller, G. Objective Eulerian coherent structures. Chaos Interdiscip. J. Nonlinear Sci.
**2016**, 26, 053110. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nolan, P.J.; Serra, M.; Ross, S.D. Finite-time Lyapunov exponents in the instantaneous limit and material transport. arXiv
**2019**, arXiv:1904.06817. [Google Scholar] - Brunton, S.L.; Rowley, C.W. Fast computation of FTLE fields for unsteady flows: A comparison of methods. Chaos Interdiscip. J. Nonlinear Sci.
**2010**, 20, 017503. [Google Scholar] [CrossRef] - Rypina, I.I.; Scott, S.; Pratt, L.J.; Brown, M.G. Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures. Nonlinear Process. Geophys.
**2011**, 18, 977–987. [Google Scholar] [CrossRef] - Pratt, L.J.; Rypina, I.I.; Özgökmen, T.M.; Wang, P.; Childs, H.; Bebieva, Y. Chaotic advection in a steady, three-dimensional, Ekman-driven eddy. J. Fluid Mech.
**2014**, 738, 143–183. [Google Scholar] [CrossRef] [Green Version] - Lekien, F.; Shadden, S.C.; Marsden, J.E. Lagrangian coherent structures in n-dimensional systems. J. Math. Phys.
**2007**, 48, 065404. [Google Scholar] [CrossRef] - Pérez-Munuzuri, V.; Huhn, F. Path-integrated Lagrangian measures from the velocity gradient tensor. Nonlinear Process. Geophys.
**2013**, 20, 987–991. [Google Scholar] [CrossRef] [Green Version] - Lee, S.; Russell, A.G.; Baumann, K. Source apportionment of fine particulate matter in the southeastern United States. J. Air Waste Manag. Assoc.
**2007**, 57, 1123–1135. [Google Scholar] [CrossRef] [Green Version] - Carlton, A.G.; de Gouw, J.; Jimenez, J.L.; Ambrose, J.L.; Attwood, A.R.; Brown, S.; Baker, K.R.; Brock, C.; Cohen, R.C.; Edgerton, S.; et al. Synthesis of the southeast atmosphere studies: investigating fundamental atmospheric chemistry questions. Bull. Am. Meteorol. Soc.
**2018**, 99, 547–567. [Google Scholar] [CrossRef] [Green Version] - Senatore, C.; Ross, S.D. Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field. Int. J. Numer. Methods Eng.
**2011**, 86, 1163–1174. [Google Scholar] [CrossRef] - Tallapragada, P.; Ross, S.D. A set oriented definition of finite-time Lyapunov exponents and coherent sets. Commun. Nonlinear Sci. Numer. Simul.
**2013**, 18, 1106–1126. [Google Scholar] [CrossRef] - Ross, S.D.; Tallapragada, P. Detecting and exploiting chaotic transport in mechanical systems. In Applications of Chaos and Nonlinear Dynamics in Science and Engineering; Banerjee, S., Rondoni, L., Mitra, M., Eds.; Springer: New York, NY, USA, 2012; Volume 2. [Google Scholar]
- Du Toit, P.C.; Marsden, J.E. Horseshoes in hurricanes. J. Fixed Point Theory Appl.
**2010**, 7, 351–384. [Google Scholar] [CrossRef] - BozorgMagham, A.E.; Ross, S.D. Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty. Commun. Nonlinear Sci. Numer. Simul.
**2015**, 22, 964–979. [Google Scholar] [CrossRef] - Nolan, P.J.; Pinto, J.; Gonzlez-Rocha, J.; Jensen, A.; Vezzi, C.N.; Bailey, S.C.C.; De Boer, G.; Diehl, C.; Laurence, R.; Powers, C.W.; et al. Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs). Sensors
**2018**, 18, 4448. [Google Scholar] [CrossRef] [Green Version] - Nolan, P.J.; McClelland, H.G.; Woolsey, C.A.; Ross, S.D. A method for detecting atmospheric Lagrangian coherent structures using a single fixed-wind unmanned aircraft system. Sensors
**2019**, 19, 1607. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Schematic of the effect of a ridgeline of the negative of the attraction rate, $-{s}_{1}^{s}$, on a small parcel of the concentration of species s. ${\mathbf{F}}_{[{t}_{0},t]}^{s}$ is the flow map for species s, as defined in (13).

**Figure 2.**Backward-time FTLE field (relative scale shown in color bar) for the horizontal wind on a pressure layer at approximately 100 m AGL with integration times T of: (

**A**) 0 h, (

**B**) −1 h, and (

**C**) −6 h. See the video version at https://youtu.be/tUZwRAPXAWY.

**Figure 3.**Vertically-integrated species amounts ${Q}^{s}$ (in kg/m${}^{2}$ for H${}_{2}$O and in mg/m${}^{2}$ for other species, as shown in the color bar) superimposed with the species effective flux-based velocity field ${\mathit{\Phi}}^{s}$; the effective velocity vector arrow scale, 10 m/s, is given. The species for each plot are: (

**A**) H${}_{2}$O, (

**B**) SO${}_{2}$, (

**C**) O${}_{3}$, (

**D**) SO${}_{4}^{2-}$, (

**E**) NO${}_{2}$, and (

**F**) Na${}^{+}$.

**Figure 4.**Backward-time FTLE field (relative scale) for the water vapor (H${}_{2}$O) generalized velocity field with integration times T of: (

**A**) 0 h, (

**B**) −1 h, and (

**C**) −6 h. See the video version at https://youtu.be/IKkD9ANZajg. In (

**D**), the correlation coefficient between FTLE field from the species-weighted vertically-integrated velocity field and the FTLE fields for each individual vertical level for integration times of $T=0$ h (blue), $T=-1$ h (orange), and $T=-6$ h (green).

**Figure 10.**The grayscale field is the vertically-integrated species amount ${Q}^{s}$ for $s=$ H${}_{2}$O (top panel), O${}_{3}$ (middle panel), and Na${}^{+}$ (bottom panel). The color bar at the right measures ${Q}^{s}$ in kg/m${}^{2}$ for water vapor H${}_{2}$O and in mg/m${}^{2}$ for ozone O${}_{3}$ and sodium Na${}^{+}$. Superimposed on the ${Q}^{s}$ field are the attractive (blue) and repelling (red) instantaneous hyperbolic Lagrangian coherent structures, material lines within the flow where the attraction and repulsion of pollutant species are maximized. For each species, three snapshots in time are shown, 15:00, 18:00, and 21:00, from left to right.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nolan, P.J.; Foroutan, H.; Ross, S.D.
Pollution Transport Patterns Obtained Through Generalized Lagrangian Coherent Structures. *Atmosphere* **2020**, *11*, 168.
https://doi.org/10.3390/atmos11020168

**AMA Style**

Nolan PJ, Foroutan H, Ross SD.
Pollution Transport Patterns Obtained Through Generalized Lagrangian Coherent Structures. *Atmosphere*. 2020; 11(2):168.
https://doi.org/10.3390/atmos11020168

**Chicago/Turabian Style**

Nolan, Peter J., Hosein Foroutan, and Shane D. Ross.
2020. "Pollution Transport Patterns Obtained Through Generalized Lagrangian Coherent Structures" *Atmosphere* 11, no. 2: 168.
https://doi.org/10.3390/atmos11020168