Impacts of Biomass Burning Emission Inventories and Atmospheric Reanalyses on Simulated PM10 over Indochina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Design
2.2. Meteorological Model
2.3. Chemical Transport Model
3. Results
3.1. Daily Meteorological Factors at Observation Sites
3.2. Daily Concentrations of PM10 at Observation Sites
3.3. Spatial Distributions for Daily Concentrations of PM10
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.; Girolamo, L.D.; Giglio, L.; et al. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res. 2013, 122, 403–468. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 19 December 2019).
- Pengchai, P.; Chantara, S.; Sopajaree, K.; Wangkarn, S.; Tencharoenkul, U.; Rayanakorn, M. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Environ. Monit. Assess. 2009, 154, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.I.; Soparajee, K.; Chotruksa, A.; Wu, H.C. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai basin, Thailand. Atmos. Environ. 2013, 78, 93–104. [Google Scholar] [CrossRef]
- Duc, H.N.; Bang, H.Q.; Quang, N.X. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environ. Monit. Assess. 2016, 188, 106. [Google Scholar] [CrossRef] [PubMed]
- Atwood, S.A.; Reid, J.S.; Kreidenweis, S.M.; Cliff, S.; Zhao, Y.; Lin, N.-H.; Tsay, S.-C.; Chu, Y.-C.; Westphal, D.L. Size resolved measurements of springtime aerosol particles over the northern South China Sea. Atmos. Environ. 2013, 78, 134–143. [Google Scholar] [CrossRef]
- Wang, S.H.; Tsay, S.-C.; Lin, N.-H.; Chang, S.-C.; Li, C.; Welton, E.J.; Holben, B.N.; Hsu, N.C.; Lau, W.K.-M.; Lolli, S.; et al. Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during 7-SEAS/Dongsha experiment. Atmos. Environ. 2013, 78, 124–133. [Google Scholar] [CrossRef]
- Byun, D.W.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Fu, J.S.; Hsu, N.C.; Gao, Y.; Huang, K.; Li, C.; Lin, N.-H.; Tsay, S.-C. Evaluating the influences of biomass burning during 2006 BASE-ASIA: A regional chemical transport modeling. Atmos. Chem. Phys. 2012, 12, 3837–3855. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.-C.; Lam, Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2013, 78, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Amnuaylojaroen, T.; Barth, M.C.; Emmons, L.K.G.; Carmichael, R.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S. Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia. Atmos. Environ. 2014, 14, 12983–13012. [Google Scholar]
- Li, J.; Zhang, Y.; Wang, Z.; Sun, Y.; Fu, P.; Yang, Y.; Huang, H.; Li, J.; Zhang, Q.; Lin, C.; et al. Regional impact of biomass burning in Southeast Asia on atmospheric aerosols during the 2013 seven South-East Asian studies project. Aerosol Air Qual. Res. 2017, 17, 2924–2941. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Vongruang, P.; Wongwises, P.; Pimonsree, S. Assessment of fire emission inventories for simulating particulate matter in Upper Southeast Asia using WRF-CMAQ. Atmos. Pollut. Res. 2017, 8, 921–929. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorolog. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.-Q.; Zhu, J.; Zhang, Y.-C.; Huang, Y.; Kuang, X.-Y. Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Q. J. R. Meteorol. Soc. 2016, 142, 108–119. [Google Scholar] [CrossRef]
- Huang, B.; Cubasch, U.; Li, Y. East Asian summer monsoon representation in re-analysis datasets. Atmosphere 2018, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one– and two–moment schemes. Mon. Wea. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Xiu, A.; Pleim, J.E. Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor. 2001, 40, 192–209. [Google Scholar] [CrossRef]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G.Z. Updates to the carbon bond chemical mechanism: CB05. Final Rep. US EPA 2005, 8, 13. [Google Scholar]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Kloster, S. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 2012, 117, G04012. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Li, M. HTAP-v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Diehl, T.; Heil, A.; Chin, M.; Pan, X.; Streets, D.; Schultz, M.; Kinne, S. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos. Chem. Phys. Discuss. 2012, 12, 24895–24954. [Google Scholar] [CrossRef] [Green Version]
- University of Wyoming, Wyoming Weather Web. Available online: http://weather.uwyo.edu/ (accessed on 19 December 2019).
- Network Center for EANET, EANET Data on the Acid Deposition in the East Asian Region. Available online: https://monitoring.eanet.asia/document/public/index (accessed on 14 June 2019).
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
Site | FNL | ERA | Observation | ||||
---|---|---|---|---|---|---|---|
Year | Mar–Apr | Year | Mar–Apr | Year | Mar–Apr | ||
Temperature | |||||||
Mean | Bangkok | 27 | 30 | 27 | 30 | 29 | 30 |
(°C) | Chiang Mai | 26 | 31 | 26 | 31 | 26 | 28 |
NMB | Bangkok | −5 | −1 | −5 | −1 | ||
(%) | Chiang Mai | −2 | 8 | −2 | 9 | ||
IA | Bangkok | 0.76 | 0.75 | 0.79 | 0.74 | ||
Chiang Mai | 0.86 | 0.62 | 0.85 | 0.60 | |||
Relative Humidity | |||||||
Mean | Bangkok | 78 | 70 | 77 | 70 | 70 | 70 |
(%) | Chiang Mai | 68 | 37 | 66 | 34 | 64 | 47 |
NMB | Bangkok | 11 | 0 | 9 | 0 | ||
(%) | Chiang Mai | 6 | −21 | 2 | −28 | ||
IA | Bangkok | 0.65 | 0.57 | 0.67 | 0.56 | ||
Chiang Mai | 0.78 | 0.60 | 0.79 | 0.54 | |||
Wind Speed | |||||||
Mean | Bangkok | 2.4 | 2.9 | 2.5 | 2.9 | 3.2 | 3.7 |
(m s−1) | Chiang Mai | 1.7 | 2.1 | 1.8 | 2.1 | 1.9 | 2.1 |
NMB | Bangkok | −27 | −21 | −22 | −19 | ||
(%) | Chiang Mai | −11 | 0 | −8 | 0 | ||
IA | Bangkok | 0.61 | 0.66 | 0.62 | 0.67 | ||
Chiang Mai | 0.58 | 0.64 | 0.59 | 0.70 |
Site | FNL + FINN | FNL + GFED | ERA + FINN | ERA + GFED | Observation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Year | Mar–Apr | Year | Mar–Apr | Year | Mar–Apr | Year | Mar–Apr | Year | Mar–Apr | ||
Mean | Bangkok | 32.2 | 32.2 | 30.7 | 27.3 | 31.0 | 35.1 | 29.3 | 29.3 | 37.2 | 38.8 |
(µg m−3) | Chiang Mai | 37.2 | 94.1 | 30.1 | 57.6 | 40.1 | 107.3 | 32.3 | 66.7 | 46.6 | 87.9 |
Maximum | Bangkok | 107.2 | 93.9 | 101.7 | 65.7 | 104.9 | 104.9 | 91.2 | 73.9 | 123.9 | 77.1 |
(µg m−3) | Chiang Mai | 309.5 | 309.5 | 145.8 | 145.8 | 339.5 | 339.5 | 225.4 | 225.4 | 242.9 | 242.9 |
NMB | Bangkok | −13 | −17 | −17 | −30 | −17 | −9 | −21 | −24 | ||
(%) | Chiang Mai | −20 | 7 | −35 | −34 | −14 | 22 | −31 | −24 | ||
IA | Bangkok | 0.88 | 0.84 | 0.85 | 0.78 | 0.85 | 0.83 | 0.82 | 0.78 | ||
Chiang Mai | 0.84 | 0.77 | 0.75 | 0.67 | 0.83 | 0.73 | 0.80 | 0.74 |
Site | FNL + GFED | ERA + FINN | ERA + GFED | |
---|---|---|---|---|
FNL + FINN | ||||
Mean (%) | Bangkok | −5 | −4 | −9 |
Chiang Mai | −19 | 8 | −13 | |
Maximum (%) | Bangkok | −5 | −2 | −15 |
Chiang Mai | −53 | 10 | −27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takami, K.; Shimadera, H.; Uranishi, K.; Kondo, A. Impacts of Biomass Burning Emission Inventories and Atmospheric Reanalyses on Simulated PM10 over Indochina. Atmosphere 2020, 11, 160. https://doi.org/10.3390/atmos11020160
Takami K, Shimadera H, Uranishi K, Kondo A. Impacts of Biomass Burning Emission Inventories and Atmospheric Reanalyses on Simulated PM10 over Indochina. Atmosphere. 2020; 11(2):160. https://doi.org/10.3390/atmos11020160
Chicago/Turabian StyleTakami, Kyohei, Hikari Shimadera, Katsushige Uranishi, and Akira Kondo. 2020. "Impacts of Biomass Burning Emission Inventories and Atmospheric Reanalyses on Simulated PM10 over Indochina" Atmosphere 11, no. 2: 160. https://doi.org/10.3390/atmos11020160
APA StyleTakami, K., Shimadera, H., Uranishi, K., & Kondo, A. (2020). Impacts of Biomass Burning Emission Inventories and Atmospheric Reanalyses on Simulated PM10 over Indochina. Atmosphere, 11(2), 160. https://doi.org/10.3390/atmos11020160