Observations of Atmospheric NO2 Using a New Low-Cost MAX-DOAS System
Abstract
:1. Introduction
2. Methods and Data
2.1. Instrument Description
2.2. Observation Site
2.3. Spectral Analysis
3. Results and Discussions
3.1. Horizontal Scanning Mode (HSM)
3.2. Vertical Scanning Mode (VSM)
3.3. Comparison with Complementary Car Differential Optical Absorption Spectroscopy (Car-DOAS) Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Dobson, G.M.; Harrison, D.N. Measurements of the Amount of Ozone in the Earth’s Atmosphere and its Relation to Other Geophysical Conditions. In Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character; Royal Society: London, UK, 1926; Volume 110, pp. 660–693. [Google Scholar]
- Dobson, G.M.B.; Kimball, H.H.; Kidson, E. Observations of the Amount of Ozone in the Earth’s Atmosphere, and Its Relation to Other Geophysical Conditions. Part IV. Proc. R. Soc. A Math. Phys. Eng. Sci. 1930, 129, 411–433. [Google Scholar] [CrossRef]
- Noxon, J.F. Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy. Science 1975, 189, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Merlaud, A. Development and Use of Compact Instruments for Tropospheric Investigations Based on Optical Spectroscopy from Mobile Platforms; Presses univ. de Louvain: Louvain-la-Neuve, Belgium, 2013; p. 307. [Google Scholar]
- Hönninger, G.; von Friedeburg, C.; Platt, U. Multi Axis Differential Optical Absorption Spectroscopy (MAXDOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef] [Green Version]
- Arpag, K.H.; Johnston, P.V.; Miller, H.L.; Sanders, R.W.; Solomon, S. Observations of the stratospheric BrO column over Colorado, 40° N. J. Geophys. Res. 1994, 99, 8175–8181. [Google Scholar] [CrossRef]
- Seitz, K.; Buxmann, J.; Pöhler, D.; Sommer, T.; Tschritter, J.; Neary, T.; O’Dowd, C.; Platt, U. The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations. Atmos. Chem. Phys. 2010, 10, 2117–2128. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Schmeltekopf, A.L.; Sanders, R.W. On the interpretation of zenith sky absorption measurements. J. Geophys. Res. 1987, 92, 8311–8319. [Google Scholar] [CrossRef]
- Wittrock, F.; Müller, R.; Richter, A.; Bovensmann, H.; Burrows, J.P. Measurements of Iodine monoxide (IO) above Spitsbergen. Geophys. Res. Lett. 2000, 27, 1471–1474. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Eisinger, M.; Ladstätter-Weißenmayer, A.; Burrows, J.P. DOAS zenith sky observations: 2. Seasonal variation of BrO over Bremen (53° N) 1994-1995. J. Atmos. Chem. 1999, 32, 83–99. [Google Scholar] [CrossRef]
- Heckel, A.; Richter, A.; Tarsu, T.; Wittrock, F.; Hak, C.; Pundt, I.; Junkermann, W.; Burrows, J.P. MAX-DOAS measurements of formaldehyde in the Po-Valley. Atmos. Chem. Phys. Discuss. 2005, 5, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Platt, U.; Stutz, J. Differential Absorption Spectroscopy. In Physics of Earth and Space Environments; Springer: Berlin, Germany, 2008. [Google Scholar] [CrossRef]
- Javez, Z.; Lui, C.; Ullah, K.; Xing, C.H.; Lui, H. Investigating the effect of different meteorological conditions on MAX-DOAS observations of NO2 and CHOCHO in Hefei, China. Atmosphere 2019, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Platt, U.; Hönninger, G. The role of halogen species in the troposphere. Chemosphere 2003, 52, 325–338. [Google Scholar] [CrossRef]
- Leser, H.; Hönninger, G.; Platt, U. MAX-DOAS measurements of BrO and NO2 in the marine boundary layer. Geophys. Res. Lett. 2003, 30, 1537. [Google Scholar] [CrossRef]
- Wang, Y.; Beirle, S.; Hendrick, F.; Hilboll, A.; Jin, J.; Kyuberis, A.A.; Lampel, J.; Li, A.; Luo, Y.; Lodi, L.; et al. MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: Inter-comparison, sensitivity studies on spectral analysis settings, and error budget. Atmos. Meas. Tech. 2017, 10, 3719–3742. [Google Scholar] [CrossRef] [Green Version]
- Bobrowski, N.; Platt, U. SO2/BrO ratios studied in five volcanic plumes. J. Volcanol. Geotherm. Res. 2007, 166, 147–160. [Google Scholar] [CrossRef]
- Trebs, I.; Meixner, F.X.; Slanina, J.; Otjes, R.; Jongejan, P.; Andreae, M.O. Erratum: Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin. Atmos. Chem. Phys. 2005, 4, 967–987. [Google Scholar] [CrossRef] [Green Version]
- Hönninger, G.; Leser, H.; Sebastián, O.; Platt, U. Ground-based measurements of halogen oxides at the Hudson Bay by active longpath DOAS and passive MAX-DOAS. Geophys. Res. Lett. 2004, 31, L04111. [Google Scholar] [CrossRef]
- Wagner, T.; Dix, B.V.; Friedeburg, C.V.; Frieß, U.; Sanghavi, S.; Sinreich, R.; Platt, U. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols–Principles and information content. J. Geophys. Res. D Atmos. 2004, 109, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.E.; Rivera, C.; de Foy, B.; Lei, W.; Song, J.; Zhang, Y.; Galle, B.; Molina, L.T. Mobile mini-DOAS measurement of the outflow of NO2 and HCHO from Mexico City. Atmos. Chem. Phys. 2009, 9, 5647–5653. [Google Scholar] [CrossRef] [Green Version]
- Schreier, S.; Peters, E.; Richter, A.; Lampel, J.; Wittrock, F.; Burrows, J. Ship-based MAX-DOAS measurements of tropospheric NO2 and SO2 in the South China and Sulu Sea. Atmos. Environ. 2015, 102, 331–343. [Google Scholar] [CrossRef]
- Constantin, D.E.; Merlaud, A.; Voiculescu, M.; Dragomir, C.; Georgescu, L.; Hendrick, F.; Pinardi, G.; Van Roozendael, M. Mobile DOAS observations of tropospheric NO2 using an ultralight trike and flux calculation. Atmosphere (Basel) 2017, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Tack, F.; Merlaud, A.; Meier, A.C.; Vlemmix, T.; Ruhtz, T.; Iordache, M.-D.; Ge, X.; van der Wal, L.; Schuettemeyer, D.; Ardelean, M.; et al. Intercomparison of four airborne imaging DOAS systems for tropospheric NO2 mapping—The AROMAPEX campaign. Atmos. Meas. Tech. 2019, 12, 211–236. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Barrera, H.; Grutter, M.; Zavala, M.; Galle, B.; Bei, N.; Li, G.; Molina, L.T. NO2 fluxes from Tijuana using a mobile mini-DOAS during Cal-Mex 2010. Atmos. Environ. 2013, 70, 532–539. [Google Scholar] [CrossRef]
- Ionov, D.; Poberovskii, A. Quantification of NOx emission from St Petersburg (Russia) using mobile DOAS measurements around the entire city. Int. J. Remote. Sens. 2015, 36, 2486–2502. [Google Scholar] [CrossRef]
- Constantin, D.E.; Merlaud, A.; Van Roozendael, M.; Voiculescu, M.; Fayt, C.; Hendrick, F.; Pinardi, G.; Georgescu, L. Measurements of tropospheric NO2 in Romania using a zenith-sky mobile DOAS system and comparisons with satellite observations. Sensors 2013, 13, 3922–3940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantin, D.E.; Merlaud, A.; Voiculescu, M.; Van Roozendael, M.; Arseni, M.; Rosu, A.; Georgescu, L. NO2 and SO2 observations in southeast Europe using mobile DOAS observations. Carpathian J. Earth Environ. Sci. 2017, 12, 323–328. [Google Scholar]
- Shaiganfar, R.; Beirle, S.; Petetin, H.; Zhang, Q.; Beekmann, M.; Wagner, T. New concepts for the comparison of tropospheric NO2 column densities derived from car-MAX-DOAS observations, OMI satellite observations and the regional model CHIMERE during two MEGAPOLI campaigns in Paris 2009/10. Atmos. Meas. Tech. 2015, 8, 2827–2852. [Google Scholar] [CrossRef] [Green Version]
- Carlos, M.A.; Schönhardt, A.; Bösch, T.; Richter, A.; Seyler, A.; Philip, B.J.; Ruhtz, T.; Constantin, D.; Georgescu, L.; Shaiganfar, R.; et al. High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT. Atmos. Meas. Tech. 2017, 10, 1831–1857. [Google Scholar] [CrossRef] [Green Version]
- Merlaud, A.; Tack, F.; Constantin, D.; Georgescu, L.; Maes, J.; Fayt, C.; Mingireanu, F.; Schuettemeyer, D.; Meier, A.C.; Ruhtz, T. The small whiskbroom imager for atmospheric composition monitoring (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign. Atmos. Meas. Tech. 2018, 11, 551–567. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, C.M.; Constantin, D.E.; Voiculescu, M.; Georgescu, L.P.; Merlaud, A.; Van Roozendael, M. Modeling results of atmospheric dispersion of NO2 in an urban area using METI–LIS and comparison with coincident mobile DOAS measurements. Atmos. Pollut. Res. 2015, 6, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Schreier, S.F.; Richter, A.; Burrows, J.P. Near-surface and path-averaged mixing ratios of NO2 derived from car DOAS zenith-sky and tower DOAS off-axis measurements in Vienna: A case study. Atmos. Chem. Phys. 2019, 19, 5853–5879. [Google Scholar] [CrossRef] [Green Version]
- Ortega, I.; Koenig, T.; Sinreich, R.; Thomson, D.; Volkamer, R. The CU 2-D-MAX-DOAS instrument—Part 1: Retrieval of 3-D distributions of NO2 and azimuth-dependent OVOC ratios. Atmos. Meas. Tech. 2015, 8, 2371–2395. [Google Scholar] [CrossRef] [Green Version]
- Constantin, D.E.; Merlaud, A.; the AROMAT team. AROMAT-I Final Report ESA Study: “Airborne Romanian Measurements of Aerosols and Trace Gases”. 2016. ESA Contract No.4000113511/NL/FF/gp. Available online: https://earth.esa.int/documents/10174/134665/AROMAT-2-Final-Report (accessed on 22 January 2020).
- Coburn, S.; Dix, B.; Sinreich, R.; Volkamer, R. The CU ground MAX-DOAS instrument: Characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO. Atmos. Meas. Tech. 2011, 4, 2421–2439. [Google Scholar] [CrossRef] [Green Version]
- Constantin, D.E.; Voiculescu, M.; Georgescu, L.; Trif, C.; Karakolios, E.; Mamoukaris, A.; Xipolitos, K. Imprint of road vehicles dynamics on atmospheric pollution. case study: Bucharest city 2007–2010. J. Environ. Prot. Ecol. 2012, 13, 837–843. [Google Scholar]
- Constantin, D.E.; Voiculescu, M.; Georgescu, L. Satellite Observations of NO2 Trend over Romania. Sci. World J. 2013, 261634. [Google Scholar] [CrossRef]
- Rosu, A.; Rosu, B.; Arseni, M.; Constantin, D.E.; Voiculescu, M.; Georgescu, L.P.; Van Roozendael, M. Tropospheric nitrogen dioxide measurements in South-East of Romania using zenith-sky mobile DOAS observations. Teh-New Technol. Prod. Mach. Manuf. Technol. 2017, 44, 189–194. [Google Scholar]
- Google Maps. Available online: https://www.google.ro/maps/@45.4472707,28.0515216,184a,35y,174.06h/data=!3m1!1e3 (accessed on 7 July 2017).
- Danckaert, T.; Fayt, C.; Van Roozendael, M.; De Smedt, I.; Letocart, V.; Merlaud, A.; Pinardi, G. QDOAS Software User Manual; Version 3; Royal Belgian Institute for Space Aeronomy: Bruxelles, Belgium, 2013. [Google Scholar]
- Kurucz, H.L. The Solar Spectrum: Atlases and Line Identifications. In Laboratory and Astronomical High Resolution Spectra; Sauval, A.J., Blomme, R., Grevesse, N., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1995; Volume 81, pp. 17–31. [Google Scholar]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Merienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 absorption cross-section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Bogumil, K.; Orphal, J.; Burrows, J.P. Temperature dependent absorption cross sections of O3, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer. Proceedings of the ERS-Envisat-Symposium, Goteborg, Sweden. 16–20 October; European Space Agency: Paris, France, 2000. [Google Scholar]
- Thalman, R.; Volkamer, R. Temperature dependent absorption cross-sections of O2-O2collision pairs from 340–630 nm. Phys. Chem. Chem. Phys. 2013, 15, 15371–15381. [Google Scholar] [CrossRef]
- Chance, K.V.; Spurr, R.J.D. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Appl. Opt. 1997, 36, 5224–5230. [Google Scholar] [CrossRef] [Green Version]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
Nr. * | Component | Description |
---|---|---|
13 | UV–Vis spectrometer | Avantes AvaSpec-ULS2048, one channel |
14 | Telescope (baffle+lens) | Black baffle: internal diameter: 9 mm, length: 2 cm Avantes collimating lens; confocal length: 8.7 mm Telescope’s field of view: 2.56° [4] |
15 | Optical fiber | Avantes 600 μm chrome plated brass optical fiber, 1 or 10 m length |
16 | Stepper motor | Nema 17 Stepper motor, 1.8°, 12 V |
17 | Mobile Arm | Metal piece |
18 | Micro Controler Board | Arduino UNO |
Optical Bench | symmetrical Czerny-Turner, 75 mm focal length |
Wavelength range | 200–550 nm |
Resolution | 0.7 nm |
Slit; Grating | 50 μm; 1200 L/mm |
Stray light | <0.3% |
Sensitivity | 250,000 counts/µW per ms int. time |
Detector | Back-thinned CCD 1 image sensor 2048 × 16 pixels, non-cooled |
Signal/Noise | 450:1 |
Integration time | 1.82 ms–60 s |
Interface | USB 2.0 high speed, 480 Mbps RS-232, 115,200 bps |
Data transfer speed | 1.82 ms/scan (USB2.0 2) |
Power supply | Default USB power, or with SPU2 3 external 12 V DC |
Dimensions; weight | 175 × 110 × 44 mm (1 channel), 855 g |
Absorption Cross-Sections | Temperature | Fitting Window (nm) | Polynomial Order | Reference |
---|---|---|---|---|
NO2 | 298 K | 425–495 | 5 | [43] |
O3 | 293 K | 425–495 | 5 | [44] |
O4 | 293 K | 425–495 | 5 | [45] |
Ring | N/A | 425–495 | 5 | [46] |
H2O | 296 K | 425–495 | 5 | [47] |
Scanning Mode | Date | Time Interval (LT) | Observations Per Sequence | Maximum NO2 DSCD (×1016 molec./cm2) | The Error of NO2 DSCD Min–Max (%) | Time Per Step (s) | Time Per Scan (min) |
---|---|---|---|---|---|---|---|
HSM | 11 April 2017 | 10–11 | 40 | 4.62 | 1.15–6.93% | 12 | 8 |
HSM | 3 June 2017 | 14–15 | 40 | 4.97 | 1.03–5.81% | 12 | 8 |
VSM | 3 June 2017 | 12–13 | 20 | 0.95 | 1.59–4.54% | 12 | 4 |
VSM | 21 June 2017 | 06–09 | 20 | 1.94 | 1.5–6.5% | 12 | 4 |
HSM | 21 June 2017 | 12–14 | 40 | 3.88 | 1.0–9.64% | 6 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roşu, A.; Constantin, D.-E.; Voiculescu, M.; Arseni, M.; Merlaud, A.; Van Roozendael, M.; Georgescu, P.L. Observations of Atmospheric NO2 Using a New Low-Cost MAX-DOAS System. Atmosphere 2020, 11, 129. https://doi.org/10.3390/atmos11020129
Roşu A, Constantin D-E, Voiculescu M, Arseni M, Merlaud A, Van Roozendael M, Georgescu PL. Observations of Atmospheric NO2 Using a New Low-Cost MAX-DOAS System. Atmosphere. 2020; 11(2):129. https://doi.org/10.3390/atmos11020129
Chicago/Turabian StyleRoşu, Adrian, Daniel-Eduard Constantin, Mirela Voiculescu, Maxim Arseni, Alexis Merlaud, Michel Van Roozendael, and Puiu Lucian Georgescu. 2020. "Observations of Atmospheric NO2 Using a New Low-Cost MAX-DOAS System" Atmosphere 11, no. 2: 129. https://doi.org/10.3390/atmos11020129
APA StyleRoşu, A., Constantin, D. -E., Voiculescu, M., Arseni, M., Merlaud, A., Van Roozendael, M., & Georgescu, P. L. (2020). Observations of Atmospheric NO2 Using a New Low-Cost MAX-DOAS System. Atmosphere, 11(2), 129. https://doi.org/10.3390/atmos11020129