Farming Practices for Reducing Ammonia Emissions in Polish Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Research
2.2. Background Characteristics of Respondents
2.3. Research Methods and Tools
3. Ammonia Emission in Poland—Size, Sources, Structure, and Options for Improving the Situation
4. Results and Discussion
5. Summary
Funding
Conflicts of Interest
References
- Fu, H.; Luo, Z.; Hu, S. A temporal-spatial analysis and future trends of ammonia emissions in China. Sci. Total Environ. 2020, 731, 138897. [Google Scholar] [CrossRef]
- Guo, X.; Ye, Z.; Chen, D.; Wu, H.; Shen, Y.; Liu, J.; Cheng, S. Prediction and mitigation potential of anthropogenic ammonia emissions within the Beijing–Tianjin–Hebei region, China. Environ. Pollut. 2020, 259, 113863. [Google Scholar] [CrossRef] [PubMed]
- UNECE. The 1999 Gothenburg Protocol to Abate Acidification Eutrophication and Ground-level Ozone (22 July 2014). 1999. Available online: http://www.unece.org/fileadmin/DAM/env/lrtap/full%20text/1999%20Multi.E.Amended.2005.pdf (accessed on 28 August 2020).
- Battye, W.; Aneja, V.P.; Roelle, P.A. Evaluation and improvement of ammonia emissions inventories. Atmos. Environ. 2003, 37, 3873–3883. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hutchings, N.J.; Webb, J. New emission factors for calculation of ammonia volatilization from European livestock manure management systems. Front. Sustain. Food Syst. 2019, 3, 101. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Dong, Y.; Wang, Z.; Zhu, T. Emission of ammonia from indoor concrete wall and assessment of human exposure. Environ. Int. 2006, 32, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Naseem, S.; King, A.J. Ammonia production in poultry houses can affect health of humans, birds, and the environment—Techniques for its reduction during poultry production. Environ. Sci. Pollut. Res. 2018, 25, 15269–15293. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gu, B.; Erisman, J.W.; Reis, S.; Fang, Y.; Lu, X.; Zhang, X. PM2.5 pollution is substantially affected by ammonia emissions in China. Environ. Pollut. 2016, 218, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Giannakis, E.; Kushta, J.; Bruggeman, A.; Lelieveld, J. Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. Environ. Sci. Eur. 2019, 31, 93. [Google Scholar] [CrossRef] [Green Version]
- Wielgosiński, G.; Czerwińska, J. Smog Episodes in Poland. Atmosphere 2020, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.A.; Dragosits, U.; Tang, Y.S.; Fowler, D. Ammonia emissions from non-agricultural sources in the UK. Atmos. Environ. 2000, 34, 855–869. [Google Scholar] [CrossRef]
- Sapek, A. Ammonia Emissions from Non-Agricultural Sources. Polish J. Environ. Stud. 2013, 22, 63–70. [Google Scholar]
- Wu, C.; Wang, G.; Li, J.; Li, J.; Cao, C.; Ge, S.; Xie, Y.; Chen, J.; Liu, S.; Du, W.; et al. Non-agricultural sources dominate the atmospheric NH3 in Xi’an, a megacity in the semi-arid region of China. Sci. Total Environ. 2020, 722, 137756. [Google Scholar] [CrossRef] [PubMed]
- Insausti, M.; Timmis, R.; Kinnersley, R.; Rufino, M.C. Advances in sensing ammonia from agricultural sources. Sci. Total Environ. 2020, 706, 135124. [Google Scholar] [CrossRef] [PubMed]
- Aneja, V.P.; Nelson, D.R.; Roelle, P.A.; Walker, J.T.; Battye, W. Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.X.; Dickerson, R.R.; Wei, Z.; Strow, L.L.; Wang, Y.; Liang, Q. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 2017, 44, 2875–2884. [Google Scholar] [CrossRef]
- Sun, K.; Tao, L.; Miller, D.J.; Pan, D.; Golston, L.M.; Zondlo, M.A.; Griffin, R.J.; Wallace, H.W.; Leong, Y.J.; Yang, M.M.; et al. Vehicle emissions as an important urban ammonia source in the United States and China. Environ. Sci. Technol. 2017, 51, 2472–2481. [Google Scholar] [CrossRef]
- Castesana, P.S.; Dawidowski, L.E.; Finster, L.; Gómez, D.R.; Taboada, M.A. Ammonia emissions from the agriculture sector in Argentina; 2000–2012. Atmos. Environ. 2018, 178, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Song, Y.; Li, M.; Li, J.; Huo, Q.; Cai, X.; Zhu, T.; Hu, M.; Zhang, H. A high-resolution ammonia emission inventory in China. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Lam, S.K.; Suter, H.; Bai, M.; Walker, C.; Mosier, A.R.; van Grinsven, H.; Chen, D. Decreasing ammonia loss from an Australian pasture with the use of enhanced efficiency fertilizers. Agric. Ecosyst. Environ. 2019, 283, 106553. [Google Scholar] [CrossRef]
- Zhang, N.; Bai, Z.; Winiwarter, W.; Ledgard, S.; Luo, J.; Liu, J.; Guo, Y.; Ma, L. Reducing Ammonia Emissions from Dairy Cattle Production via Cost-Effective Manure Management Techniques in China. Environ. Sci. Technol. 2019, 53, 11840–11848. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Tian, H.; Pan, S.; Prior, S.A.; Feng, Y.; Batchelor, W.D.; Chen, J.; Yang, J. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Glob. Chang. Biol. 2019, 25, 314–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goebes, M.D.; Strader, R.; Davidson, C. An ammonia emission inventory for fertilizer application in the United States. Atmos. Environ. 2003, 37, 2539–2550. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hutchings, N.J. Ammonia emission from field applied manure and its reduction. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Ammonia Emissions from Agriculture (Source: EEA). Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=sdg_02_60 (accessed on 5 August 2020).
- Dróżdż, D.; Wystalska, K.; Malińska, K.; Grosser, A.; Grobelak, A.; Kacprzak, M. Management of poultry manure in Poland–Current state and future perspectives. J. Environ. Manag. 2020, 264, 110327. [Google Scholar] [CrossRef]
- Rzeźnik, W.; Mielcarek, P. Greenhouse Gases and Ammonia Emission Factors from Livestock Buildings for Pigs and Dairy Cows. Polish J. Environ. Stud. 2016, 25, 1813–1821. [Google Scholar] [CrossRef]
- Faber, A.; Jarosz, Z.; Żyłowski, T. Weryfikacja możliwości redukcji emisji amoniaku dla różnych praktyk aplikacji gnojowicy w Polsce. Problemy Rolnictwa Światowego 2019, 19, 31–40. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Erisman, J.W.; Schaap, M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 2003, 129, 159–163. [Google Scholar] [CrossRef]
- Anderson, N.; Strader, R.; Davidson, C. Airborne reduced nitrogen: Ammonia emissions from agriculture and other sources. Environ. Int. 2003, 29, 277–286. [Google Scholar] [CrossRef]
- Dzikuć, M.; Kułyk, P.; Dzikuć, M.; Urban, S.; Piwowar, A. Outline of Ecological and Economic Problems Associated with the Low Emission Reductions in the Lubuskie Voivodeship (Poland). Polish J. Environ. Stud. 2019, 28, 1–8. [Google Scholar]
- Olszowski, T. Influence of Individual Household Heating on PM2.5 Concentration in a Rural Settlement. Atmosphere 2019, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Łowicki, D. Landscape pattern as an indicator of urban air pollution of particulate matter in Poland. Ecol. Indic. 2019, 97, 17–24. [Google Scholar] [CrossRef]
- Piwowar, A. Agricultural biogas—An important element in the circular and low-carbon development in Poland. Energies 2020, 13, 1733. [Google Scholar] [CrossRef] [Green Version]
- Piwowar, A. Low carbon agriculture in Poland—Theoretical and practical challenges. Polish J. Environ. Stud. 2019, 28, 2785–2792. [Google Scholar] [CrossRef]
- The Role of Agriculture in Polish Economy. Available online: https://www.igipz.pan.pl/tl_files/igipz/ZGWiRL/ARP/01.Znaczenie%20rolnictwa%20w%20gospodarce%20Polski.pdf (accessed on 2 August 2020).
- Hoffman, D.L.; De Leeuw, J. Interpreting multiple correspondence analysis as a multidimensional scaling method. Mark. Lett. 1992, 3, 259–272. [Google Scholar] [CrossRef]
- Cavallo, E.; Ferrari, E.; Bollani, L.; Coccia, M. Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A case study in Italian agricultural system. Agric. Syst. 2014, 130, 44–54. [Google Scholar] [CrossRef]
- Ter Braak, C.J. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 1987, 69, 69–77. [Google Scholar] [CrossRef]
- Brunette, M.; Bourke, R.; Hanewinkel, M.; Yousefpour, R. Adaptation to climate change in forestry: A multiple correspondence analysis (MCA). Forests 2018, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Jiang, Y.; Xia, L.; Mi, T.; Yan, W.; Gao, Y.; Jiang, X.; Fawundu, E.; Hussain, J. Application of canonical correspondence analysis to determine the ecological contribution of phytoplankton to PCBs bioaccumulation in Qinhuai River, Nanjing, China. Environ. Sci. Pollut. Res. 2014, 21, 3091–3103. [Google Scholar] [CrossRef]
- Materiały do pobrania w kategorii: Krajowa inwentaryzacja emisjiDrukuj. Available online: https://www.kobize.pl/pl/fileCategory/id/16/krajowa-inwentaryzacja-emisji (accessed on 2 August 2020).
- Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.; Langhout, D.J.; Verstegen, M.W.A. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livest. Prod. Sci. 1998, 56, 181–191. [Google Scholar] [CrossRef]
- Wang, H.; Long, W.; Chadwick, D.; Velthof, G.L.; Oenema, O.; Ma, W.; Wang, J.; Wei, Q.; Hou, T.; Zhang, F. Can dietary manipulations improve the productivity of pigs with lower environmental and economic cost? A global meta-analysis. Agric. Ecosyst. Environ. 2020, 289, 106748. [Google Scholar] [CrossRef]
- Liu, S.; Ni, J.Q.; Radcliffe, J.S.; Vonderohe, C.E. Mitigation of ammonia emissions from pig production using reduced dietary crude protein with amino acid supplementation. Bioresour. Technol. 2017, 233, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radcliffe, S.; Richert, B.; Sholly, D.; Foster, K.; Hollas, B.; Lim, T.; Ni, J.; Heber, A.; Sutton, A. Diet modification to reduce odors, gas emissions and nutrient excretions from swine operations. In Proceedings of the Mitigating Air Emissions from Animal Feeding Operations, Des Moines, Iowa, 19–20 May 2005; pp. 114–119. [Google Scholar]
- Dach, J. Polish experience with ammonia emission abatement for straw-based manure. In Emissions from European Agriculture; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 295–303. [Google Scholar]
- Dach, J.; Niżewski, P.; Czekała, J.; Zbytek, Z. Comparison of ammonia emission from composted swine farmyard manure and composted sewage sludge. J. Res. Appl. Agric. Eng. 2008, 53, 58–64. [Google Scholar]
- Jarosz, Z.; Faber, A. Possibilities of reducing ammonia emissions from agriculture—Scenario for 2030. Ann. PAAAE 2020, 22, 41–48. [Google Scholar] [CrossRef]
- Rzeźnik, W. Ograniczanie emisji zanieczyszczeń gazowych z tuczarni poprzez zastosowanie instalacji do odzysku ciepła. Inżynieria Rol. 2013, 3, 331–339. (In Polish) [Google Scholar]
- Misselbrook, T.; Hunt, J.; Perazzolo, F.; Provolo, G. Greenhouse gas and ammonia emissions from slurry storage: Impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry). J. Environ. Qual. 2016, 45, 1520–1530. [Google Scholar] [CrossRef]
- Bieńkowski, J.; Jankowski, J.; Holka, M. Emisje amoniaku w rolnictwie zagrożeniem dla środowiska. Aura 2018, 3, 3–5. (In Polish) [Google Scholar]
- Chiumenti, A.; da Borso, F.; Pezzuolo, A.; Sartori, L.; Chiumenti, R. Ammonia and greenhouse gas emissions from slatted dairy barn floors cleaned by robotic scrapers. Res. Agric. Eng. 2018, 64, 26–33. [Google Scholar]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Mazur, K.; Barwicki, J.; Borek, K.; Wardal, W.J. Procesy chemiczne w glebie przy stosowaniu gnojowicy zakwaszonej kwasem siarkowym w uprawach polowych. Przemysł Chem. 2019, 98, 424–428. (In Polish) [Google Scholar] [CrossRef]
- Wlazło, Ł.; Nowakowicz-Dębek, B.; Kułażyński, M.; Wnuk, W.; Ossowski, M. Modelowanie rozprzestrzeniania się amoniaku w powietrzu atmosferycznym wokół fermy drobiu. Przemysł Chem. 2018, 97, 645–647. (In Polish) [Google Scholar] [CrossRef]
Specification | 2013 | 2014 | 2015 | 2016 | 2017 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Tonne | % | Tonne | % | Tonne | % | Tonne | % | Tonne | % | |
Belgium | 66,048 | 1.88 | 64,423 | 1.81 | 63,994 | 1.78 | 63,013 | 1.74 | 62,323 | 1.71 |
Bulgaria | 37,927 | 1.08 | 41,274 | 1.16 | 41,932 | 1.16 | 42,732 | 1.18 | 41,533 | 1.14 |
Czechia | 64,770 | 1.84 | 65,227 | 1.83 | 65,914 | 1.83 | 65,474 | 1.81 | 60,656 | 1.67 |
Denmark | 69,831 | 1.99 | 70,519 | 1.98 | 70,578 | 1.96 | 70,852 | 1.96 | 72,216 | 1.99 |
Germany | 641,553 | 18.25 | 644,822 | 18.12 | 655,750 | 18.20 | 647,625 | 17.88 | 639,807 | 17.60 |
Estonia | 9306 | 0.26 | 9483 | 0.27 | 8987 | 0.25 | 8888 | 0.25 | 8998 | 0.25 |
Ireland | 106,342 | 3.03 | 106,912 | 3.00 | 109,408 | 3.04 | 114,931 | 3.17 | 117,382 | 3.23 |
Greece | 56,671 | 1.61 | 54,668 | 1.54 | 52,163 | 1.45 | 51,392 | 1.42 | 50,130 | 1.38 |
Spain | 410,882 | 11.69 | 431,792 | 12.14 | 442,427 | 12.28 | 453,398 | 12.51 | 469,857 | 12.92 |
France | 555,502 | 15.80 | 565,784 | 15.90 | 571,392 | 15.86 | 569,858 | 15.73 | 568,243 | 15.63 |
Croatia | 30,205 | 0.86 | 28,986 | 0.81 | 32,805 | 0.91 | 31,441 | 0.87 | 31,827 | 0.88 |
Italy | 363,456 | 10.34 | 354,128 | 9.95 | 355,409 | 9.87 | 370,022 | 10.21 | 362,178 | 9.96 |
Cyprus | 6035 | 0.17 | 5936 | 0.17 | 5986 | 0.17 | 6174 | 0.17 | 6272 | 0.17 |
Latvia | 13,638 | 0.39 | 13,981 | 0.39 | 14,028 | 0.39 | 13,973 | 0.39 | 14,039 | 0.39 |
Lithuania | 26,772 | 0.76 | 27,159 | 0.76 | 27,134 | 0.75 | 26,354 | 0.73 | 25,871 | 0.71 |
Luxembourg | 5068 | 0.14 | 5173 | 0.15 | 5254 | 0.15 | 5376 | 0.15 | 5445 | 0.15 |
Hungary | 72,791 | 2.07 | 73,977 | 2.08 | 78,256 | 2.17 | 78,438 | 2.17 | 79,622 | 2.19 |
Malta | 1173 | 0.03 | 1161 | 0.03 | 1152 | 0.03 | 1099 | 0.03 | 1065 | 0.03 |
Netherlands | 105,530 | 3.00 | 109,960 | 3.09 | 111,100 | 3.08 | 109,720 | 3.03 | 113,834 | 3.13 |
Austria | 61,398 | 1.75 | 62,299 | 1.75 | 62,945 | 1.75 | 63,874 | 1.76 | 64,615 | 1.78 |
Poland | 274,266 | 7,80 | 270,052 | 7.59 | 266,270 | 7.39 | 272,841 | 7.53 | 287,914 | 7.92 |
Portugal | 42,752 | 1.22 | 45,150 | 1.27 | 46,257 | 1.28 | 46,691 | 1.29 | 47,060 | 1.29 |
Romania | 150,223 | 4.27 | 147,225 | 4.14 | 150,781 | 4.19 | 147,135 | 4.06 | 144,309 | 3.97 |
Slovenia | 16,480 | 0.47 | 16,789 | 0.47 | 16,900 | 0.47 | 17,190 | 0.47 | 16,893 | 0.46 |
Slovakia | 28,982 | 0.82 | 29,964 | 0.84 | 29,709 | 0.82 | 25,003 | 0.69 | 24,044 | 0.66 |
Finland | 29,911 | 0.85 | 30,214 | 0.85 | 28,863 | 0.80 | 28,532 | 0.79 | 27,795 | 0.76 |
Sweden | 47,521 | 1.35 | 47,783 | 1.34 | 47,873 | 1.33 | 46,803 | 1.29 | 46,999 | 1.29 |
United Kingdom | 219,710 | 6.25 | 233,235 | 6.56 | 238,996 | 6.63 | 244,037 | 6.74 | 244,928 | 6.74 |
EU (28) | 3,514,740 | 100 | 3,558,074 | 100 | 3,602,262 | 100 | 3,622,865 | 100 | 3,635,852 | 100 |
Specification | Population | Share in the Test Sample |
---|---|---|
(pcs) | (%) | |
Age of respondents | ||
18–29 y | 128 | 11.6 |
30–39 y | 250 | 22.7 |
40–49 y | 328 | 29.8 |
50–59 y | 281 | 25.5 |
>60 y | 102 | 9.3 |
No data | 5212 | 1.1 |
Total | 1101 | 100 |
Gender of respondents | ||
Women | 197 | 17.9 |
Men | 901 | 81.8 |
No data | 3 | 0.3 |
Total | 1101 | 100 |
Education level of respondents | ||
Primary | 44 | 4.0 |
Graduate vocational school | 389 | 35.3 |
Secondary | 518 | 47.0 |
Higher | 142 | 12.9 |
No data | 8 | 0.7 |
Total | 1101 | 100 |
Number of years worked in agricultural holding | ||
1–5 y | 90 | 8.2 |
6–10 y | 146 | 13.3 |
11–15 y | 119 | 10.8 |
16–20 y | 172 | 15.6 |
21–25 y | 138 | 12.5 |
26–30 y | 152 | 13.8 |
>31 y | 282 | 25.6 |
No data | 2 | 0.2 |
Total | 1101 | 100 |
Selected features of agricultural holdings | ||
Area of agricultural lands [ha] | ||
<5 | 88 | 8.0 |
5–9.99 | 195 | 17.7 |
10–14.99 | 191 | 17.3 |
15–19.99 | 136 | 12.4 |
20–29.99 | 164 | 14.9 |
30–49.99 | 170 | 15.4 |
50–99.99 | 115 | 10.4 |
>100 | 41 | 3.7 |
No data | 1 | 0.1 |
Total | 1101 | 100 |
Economic size of agricultural holding (SO) | ||
<10 thousand euro | 316 | 28.7 |
10.1–13 thousand euro | 156 | 14.2 |
13.1–20 thousand euro | 188 | 17.1 |
20.1–50 thousand euro | 232 | 21.1 |
50.1–100 thousand euro | 99 | 9.0 |
100.1–200 thousand euro | 40 | 3.6 |
>200 thousand euro | 4 | 0.4 |
No data | 66 | 6.0 |
Total | 1101 | 100 |
Plant Production | Animal Production |
---|---|
I have a current nitrogen balance | I use nitrogen-fixing preparations in animal nutrition |
I use split doses of nitrogen fertilizers (depending on the vegetation period of plants) | I limit ammonia emissions by using in livestock buildings: (a) ultraviolet radiation (b) negative ionization of air (c) mechanical ventilation with recirculation (d) underfloor heating (e) microbiological and mineral-organic additives to animal feces |
I use fertilizers with slowed or controlled release of nutrients | I use properly selected feed additives ensuring effective functioning of the digestive tract of animals (plant extracts, organic acids, pre- and probiotics) |
NFR * Aggregation for Gridding and LPS (GNFR) | NFR * Sectors to Be Reported | 2013 | 2017 | |
---|---|---|---|---|
Volume | ||||
NFR * Code | Longname | (kt) | ||
K_AgriLivestock | 3B1a | Manure management—Dairy cattle | 33.58 | 34.44 |
K_AgriLivestock | 3B1b | Manure management—Non-dairy cattle | 19.01 | 21.69 |
K_AgriLivestock | 3B2 | Manure management—Sheep | 0.21 | 0.27 |
K_AgriLivestock | 3B3 | Manure management—Swine | 29.96 | 29.77 |
K_AgriLivestock | 3B4a | Manure management—Buffalo | NO | NO |
K_AgriLivestock | 3B4d | Manure management—Goats | 0.07 | 0.04 |
K_AgriLivestock | 3B4e | Manure management—Horses | 0.74 | 0.67 |
K_AgriLivestock | 3B4f | Manure management—Mules and asses | NO | NO |
K_AgriLivestock | 3B4gi | Manure management—Laying hens | 6.54 | 6.56 |
K_AgriLivestock | 3B4gii | Manure management—Broilers | 3.91 | 6.76 |
K_AgriLivestock | 3B4giii | Manure management—Turkeys | IE | IE |
K_AgriLivestock | 3B4giv | Manure management—Other poultry | 6.80 | 7.87 |
K_AgriLivestock | 3B4h | Manure management—Other animals (please specify in IIR) | 0.01 | 0.02 |
L_AgriOther | 3Da1 | Inorganic N-fertilizers (includes also urea application) | 63.42 | 61.89 |
L_AgriOther | 3Da2a | Animal manure applied to soils | 103.24 | 111.15 |
L_AgriOther | 3Da2b | Sewage sludge applied to soils | 0.57 | 0.52 |
L_AgriOther | 3Da2c | Other organic fertilizers applied to soils (including compost) | NE | NE |
L_AgriOther | 3Da3 | Urine and dung deposited by grazing animals | 6.19 | 6.26 |
L_AgriOther | 3Da4 | Crop residues applied to soils | NE | NE |
L_AgriOther | 3Db | Indirect emissions from managed soils | NE | NE |
L_AgriOther | 3Dc | Farm-level agricultural operations including storage. handling and transport of agricultural products | NA | NA |
L_AgriOther | 3Dd | Off-farm storage. handling and transport of bulk agricultural products | NA | NA |
L_AgriOther | 3De | Cultivated crops | NA | NA |
L_AgriOther | 3Df | Use of pesticides | NA | NA |
L_AgriOther | 3F | Field burning of agricultural residues | 0.02 | 0.02 |
L_AgriOther | 3I | Agriculture other (please specify in the IIR) | NO | NO |
Other Agricultural sector NH3 emission | 274.27 | 287.91 | ||
National total NH3 emission | 294.43 | 307.52 | ||
Other Agricultural sector/National total emission | 93.15% | 93.62% |
χ2 | Arable Land Area | Economic Size of Agricultural Holding | District | Age | Education Level |
---|---|---|---|---|---|
φ2 | c ** = 5 | c ** = 6 | c ** = 6 | c ** = 5 | c ** = 4 |
Split doses r ** = 3 | 69.94997 (20.0902) 0.06765 | 119.64513 (23.2093) 0.11571 | 71.06556 (23.2093) 0.06873 | 7.46578 (20.0902) 0.00722 | 32.03019 (16.8119) 0.030977 |
χ2 | Arable Land Area | Economic Size of Agricultural Holding | District | Age | Education Level |
---|---|---|---|---|---|
φ2 | c ** = 5 | c ** = 6 | c ** = 6 | c ** = 5 | c ** = 4 |
Use feed additives r ** = 3 | 21.14259 (20.0902) 0.040659 | 37.75926 (23.2093) 0.072614 | 37.55571 (23.2093) 0.072223 | 8.41090 (20.0902) 0.016175 | 17.282774 (16.8119) 0.033236 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piwowar, A. Farming Practices for Reducing Ammonia Emissions in Polish Agriculture. Atmosphere 2020, 11, 1353. https://doi.org/10.3390/atmos11121353
Piwowar A. Farming Practices for Reducing Ammonia Emissions in Polish Agriculture. Atmosphere. 2020; 11(12):1353. https://doi.org/10.3390/atmos11121353
Chicago/Turabian StylePiwowar, Arkadiusz. 2020. "Farming Practices for Reducing Ammonia Emissions in Polish Agriculture" Atmosphere 11, no. 12: 1353. https://doi.org/10.3390/atmos11121353
APA StylePiwowar, A. (2020). Farming Practices for Reducing Ammonia Emissions in Polish Agriculture. Atmosphere, 11(12), 1353. https://doi.org/10.3390/atmos11121353