The Microscale Urban Surface Energy (MUSE) Model for Real Urban Application
Abstract
:1. Introduction
2. Description of the Microscale Urban Surface Energy (MUSE) Model
2.1. Grid Representation and Urban Physical Processes
2.1.1. Grid Representation of Urban Surfaces
2.1.2. Urban Physical Processes
2.2. Radiation Processes
2.2.1. Shadow Model
2.2.2. Patch View Factors
2.2.3. Shortwave Radiation
2.2.4. Longwave Radiation
2.3. Turbulent Sensible Heat Exchange
2.3.1. Horizontal Roof and Road Patches
2.3.2. Vertical Wall Patches
2.4. Subsurface Heat Conduction
3. Field Measurements and the MUSE Model Configuration for Validation
3.1. Field Measurements
3.2. Configuration of the Model
4. Validation Results
4.1. Shadow Model, View Factors, and Effective Albedos
4.2. The Real Urban Simulation
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Comparison of the MUSE and TUF-3D Models
MUSE (This Study) | TUF-3D (Krayenhoff et al. [40]) | |
---|---|---|
Shadow model | Geometric ray casting approach (this study) | Ray tracing algorithm (modified from Soux et al. [81]) |
View factor | Numerical method based on analytical formulation (Lee et al. [63]) | Exact plane parallel analytical equations (Siegel and Howell [57]) |
Turbulent sensible heat exchange for roof and road surfaces | Monin–Obukhov similarity (Lee and Park [64]) | Empirical formulation (Rowley et al. [66]; Cole and Sturrock [82]) |
Turbulent sensible heat exchange for wall surfaces | Empirical formulation (Rowley et al. [66]) | Empirical formulation (Rowley et al. [66]; Cole and Sturrock [82]) |
Subsurface heat conduction | 1-D heat conduction equation/explicit finite difference method on a staggered grid (Lee and Park [64]) | 1-D heat conduction equation/finite difference method on a regular grid (Masson [67]) |
References
- Lee, I.Y.; Park, H.M. Parameterization of the pollutant transport and dispersion in urban street canyons. Atmos. Environ. 1994, 28, 2343–2349. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kim, J.-J. A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons. J. Appl. Meteorol. 1999, 38, 1576–1589. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kim, J.-J.; Fernando, H.J.S. A CFD Model for Simulating Urban Flow and Dispersion. J. Appl. Meteorol. 2003, 42, 1636–1648. [Google Scholar] [CrossRef]
- Kanda, M.; Moriwaki, R.; Kasamatsu, F. Large-Eddy Simulation of Turbulent Organized Structures within and above Explicitly Resolved Cube Arrays. Bound. Layer Meteorol. 2004, 112, 343–368. [Google Scholar] [CrossRef]
- Letzel, M.O.; Krane, M.; Raasch, S. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 2008, 42, 8770–8784. [Google Scholar] [CrossRef]
- Inagaki, A.; Castillo, M.C.L.; Yamashita, Y.; Kanda, M.; Takimoto, H. Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy. Bound. Layer Meteorol. 2012, 142, 207–222. [Google Scholar] [CrossRef]
- Kim, J.-J.; Baik, J.-J. A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons. J. Appl. Meteorol. 1999, 38, 1249–1261. [Google Scholar] [CrossRef]
- Lin, M.; Hang, J.; Li, Y.; Luo, Z.; Sandberg, M. Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density. Build. Environ. 2014, 79, 152–167. [Google Scholar] [CrossRef]
- Ramponi, R.; Blocken, B.; De Coo, L.B.; Janssen, W.D. CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build. Environ. 2015, 92, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; Di Sabatino, S. The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build. Environ. 2012, 56, 346–360. [Google Scholar] [CrossRef]
- Blocken, B.; Janssen, W.; Van Hooff, T. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environ. Model. Softw. 2012, 30, 15–34. [Google Scholar] [CrossRef]
- Park, S.-B.; Baik, J.-J.; Lee, S.-H. Impacts of Mesoscale Wind on Turbulent Flow and Ventilation in a Densely Built-up Urban Area. J. Appl. Meteorol. Clim. 2015, 54, 811–824. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, Y.; Duan, J.; Shao, R.; Wang, J. Assessment of pedestrian wind environment in urban planning design. Landsc. Urban Plan. 2015, 140, 17–28. [Google Scholar] [CrossRef]
- Antoniou, N.; Montazeri, H.; Wigo, H.; Neophytou, M.K.-A.; Blocken, B.; Sandberg, M. CFD and wind-tunnel analysis of outdoor ventilation in a real compact heterogeneous urban area: Evaluation using “air delay”. Build. Environ. 2017, 126, 355–372. [Google Scholar] [CrossRef]
- Kurppa, M.; Hellsten, A.; Auvinen, M.; Raasch, S.; Vesala, T.; Järvi, L. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere 2018, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; Van Heijst, G.J. A review on the CFD analysis of urban microscale. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. A new software tool for SVF calculations using building and tree-crown databases. Urban Clim. 2014, 10, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T. Towards practical use of LES in wind engineering. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1451–1471. [Google Scholar] [CrossRef]
- Letzel, M.O.; Helmke, C.; Ng, E.; An, X.; Lai, A.; Raasch, S. LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong. Meteorol. Z. 2012, 21, 575–589. [Google Scholar] [CrossRef]
- Park, S.-B.; Baik, J.-J.; Han, B.-S. Large-eddy simulation of turbulent flow in a densely built-up urban area. Environ. Fluid Mech. 2013, 15, 235–250. [Google Scholar] [CrossRef]
- Kanda, M.; Inagaki, A.; Miyamoto, T.; Gryschka, M.; Raasch, S. A new aerodynamic parameterization for real urban surfaces. Bound. Layer Meteorol. 2013, 148, 357–377. [Google Scholar] [CrossRef]
- Nakayama, H.; Jurčáková, K.; Nagai, H. Large-Eddy Simulation of plume dispersion within various actual urban areas. Adv. Sci. Res. 2013, 10, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Scherer, D.; Fehrenbach, U.; Fenner, D.; Grassmann, T.; Holtmann, A.; Krug, A.; Meier, F.; Otto, M.; Scherber, K. Overview on multi-scale, three-dimensional atmospheric studies in Berlin, Germany. In Proceedings of the 10th International Conference on Urban Climate/14th Symposium on the Urban Environment, New York, NY, USA, 6–10 August 2018. [Google Scholar]
- Gowardhan, A.A.; Pardyjak, E.R.; Senocak, I.; Brown, M.J. A CFD-based wind solver for an urban fast response transport and dispersion model. Environ. Fluid Mech. 2011, 11, 439–464. [Google Scholar] [CrossRef]
- Kim, J.-J.; Baik, J.-J. Urban street-canyon flows with bottom heating. Atmos. Environ. 2001, 35, 3395–3404. [Google Scholar] [CrossRef]
- Kovar-Panskus, A.; Moulinneuf, L.; Savory, E.; Abdelqari, A.; Sini, J.-F.; Rosant, J.-M.; Robins, A.; Toy, N. A Wind Tunnel Investigation of the Influence of Solar-Induced Wall-Heating on the Flow Regime within a Simulated Urban Street Canyon. Water Air Soil Pollut. Focus 2002, 2, 555–571. [Google Scholar] [CrossRef]
- Xie, X.; Liu, C.-H.; Leung, D.Y.C.; Leung, M.K.H. Characteristics of air exchange in a street canyon with ground heating. Atmos. Environ. 2006, 40, 6396–6409. [Google Scholar] [CrossRef]
- Kwak, K.-H.; Baik, J.-J.; Lee, S.-H.; Ryu, Y.-H. Computational Fluid Dynamics Modelling of the Diurnal Variation of Flow in a Street Canyon. Bound. Layer Meteorol. 2011, 141, 77–92. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y. Thermal conditions and ventilation in an ideal city model of Hong Kong. Energy Build. 2011, 43, 1139–1148. [Google Scholar] [CrossRef]
- Cai, X.M. Effects of Wall Heating on Flow Characteristics in a Street Canyon. Bound. Layer Meteorol. 2012, 142, 443–467. [Google Scholar] [CrossRef]
- Santiago, J.L.; Krayenhoff, E.S.; Martilli, A. Flow simulations for simplified urban configurations with microscale distributions of surface thermal forcing. Urban Clim. 2014, 9, 115–133. [Google Scholar] [CrossRef]
- Nazarian, N.; Kleissl, J. Realistic solar heating in urban areas: Air exchange and street-canyon ventilation. Build. Environ. 2016, 95, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Nazarian, N.; Martilli, A.; Kleissl, J. Impacts of Realistic Urban Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and Pollutant Dispersion. Bound. Layer Meteorol. 2017, 166, 367–393. [Google Scholar] [CrossRef]
- Nazarian, N.; Martilli, A.; Norford, L.; Kleissl, J. Impacts of realistic urban heating, part Ⅱ: Air quality and city breathability. Bound. Layer Meteorol. 2018, 168, 321–341. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ng, E. Air ventilation assessment under unstable atmospheric stratification—A comparative study for Hong Kong. Build. Environ. 2018, 130, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 1998, 19, 895–920. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Hu, L.; Monaghan, A.; Voogt, J.A.; Barlage, M. A first satellite-based observational assessment of urban thermal anisotropy. Remote Sens. Environ. 2016, 181, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Krayenhoff, E.S.; Voogt, J.A. A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound. Layer Meteorol. 2007, 123, 433–461. [Google Scholar] [CrossRef]
- Yaghoobian, N.; Kleissl, J. An indoor–outdoor building energy simulator to study urban modification effects on building energy use—Model description and validation. Energy Build. 2012, 54, 407–417. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. Development of a Three-Dimensional Urban Energy Model for Predicting and Understanding Surface Temperature Distribution. Bound. Layer Meteorol. 2013, 149, 303–321. [Google Scholar] [CrossRef]
- Overby, M.; Willemsen, P.; Bailey, B.N.; Halverson, S.; Pardyjak, E.R. A rapid and scalable radiation transfer model for complex urban domains. Urban Clim. 2016, 15, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Yaghoobian, N.; Kleissl, J.; Paw U, K.T. An Improved Three-Dimensional Simulation of the Diurnally Varying Street-Canyon Flow. Bound. Layer Meteorol. 2014, 153, 251–276. [Google Scholar] [CrossRef]
- Aliabadi, A.A.; Krayenhoff, E.S.; Nazarian, N.; Chew, L.W.; Armstrong, P.R.; Afshari, A.; Norford, L.K. Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons. Bound. Layer Meteorol. 2017, 164, 249–279. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Resler, J.; Krč, P.; Belda, M.; Juruš, P.; Benešová, N.; Lopata, J.; Vlček, O.; Damašková, D.; Eben, K.; Derbek, P.; et al. PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model. Geosci. Model Dev. 2017, 10, 3635–3659. [Google Scholar] [CrossRef] [Green Version]
- Núñez, M.; Oke, T.R. Modeling the Daytime Urban Surface Energy Balance. Geogr. Anal. 1980, 12, 373–386. [Google Scholar] [CrossRef]
- Oke, T.R.; Kalanda, B.D.; Steyn, D.G. Parameterization of heat storage in urban areas. Urban Ecol. 1981, 5, 45–54. [Google Scholar] [CrossRef]
- Doll, D.; Ching, J.K.S.; Kaneshiro, J. Parameterization of subsurface heating for soil and concrete using net radiation data. Bound. Layer Meteorol. 1985, 32, 351–372. [Google Scholar] [CrossRef]
- Anandakumar, K. A study on the partition of net radiation into heat fluxes on a dry asphalt surface. Atmos. Environ. 1999, 33, 3911–3918. [Google Scholar] [CrossRef]
- Smith, J.B.; Schellnhuber, H.J.; Mirza, M.M.; Frankhauser, S.; Leemans, R.; Erda, L.; Ogallo, L.; Pittock, B.; Richels, R.; Rosenzweig, C.; et al. Vulnerability to climate change and reasons for concern: A synthesis. In Climate Change 2001: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; pp. 913–967. [Google Scholar]
- Adebayo, Y.R. Aspects of the variation in some characteristics of radiation budget within the urban canopy of Ibadan. Atmos. Environ. Part B Urban Atmos. 1990, 24, 9–17. [Google Scholar] [CrossRef]
- Mills, G. An urban canopy-layer climate model. Theor. Appl. Clim. 1997, 57, 229–244. [Google Scholar] [CrossRef]
- Johnson, G.T.; Oke, T.R.; Lyons, T.J.; Steyn, D.G.; Watson, I.D.; Voogt, J.A. Simulation of surface urban heat islands under ‘IDEAL’ conditions at night part 1: Theory and tests against field data. Bound. Layer Meteorol. 1991, 56, 275–294. [Google Scholar] [CrossRef]
- Swaid, H. The role of radiative-convective interaction in creating the microclimate of urban street canyons. Bound. Layer Meteorol. 1993, 64, 231–259. [Google Scholar] [CrossRef]
- Siegel, R.; Howell, J.R. Thermal Radiation and Heat Transfer; McGraw-Hill: New York, NY, USA, 1972; p. 825. [Google Scholar]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Clim. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Johnson, G.T.; Watson, I.D. The Determination of View-Factors in Urban Canyons. J. Clim. Appl. Meteorol. 1984, 23, 329–335. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Krayenhoff, E.S.; Christen, A.; Martilli, A.; Oke, T.R. A Multi-layer Radiation Model for Urban Neighbourhoods with Trees. Bound. Layer Meteorol. 2014, 151, 139–178. [Google Scholar] [CrossRef]
- Wang, Z.-H. Monte Carlo simulations of radiative heat exchange in a street canyon with trees. Sol. Energy 2014, 110, 704–713. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-I.; Woo, J.-W.; Lee, S.-H. An analytically based numerical method for computing view factors in real urban environments. Theor. Appl. Clim. 2018, 131, 445–453. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, S.-U. A Vegetated Urban Canopy Model for Meteorological and Environmental Modelling. Bound. Layer Meteorol. 2008, 126, 73–102. [Google Scholar] [CrossRef]
- Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kananisuhring, F.; Keck, M.; Ketelsen, K.; Letzel, M.O.; Suhring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev. 2015, 8, 2515–2551. [Google Scholar] [CrossRef] [Green Version]
- Rowley, F.B.; Algren, A.B.; Blackshaw, J.L. Surface conductances as affected by air velocity, temperature and character of surface. ASHRAE Trans. 1930, 36, 429–446. [Google Scholar]
- Masson, V. A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models. Bound. Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Oke, T.R. The urban energy balance. Prog. Phys. Geogr. Earth Environ. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Lee, D.-I.; Lee, J.-H.; Lee, S.-H. Uncertainty analysis of the eddy-covariance turbulence fluxes measured over a heterogeneous urban area: A coordinate tilt impact. Atmosphere 2016, 26, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Lemonsu, A.; Grimmond, C.S.B.; Masson, V. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille. J. Appl. Meteorol. 2004, 43, 312–327. [Google Scholar] [CrossRef]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics: Plants, Animals, and the Atmosphere, 3rd ed.; Academic Press: Waltham, MA, USA, 2008. [Google Scholar]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Högström, U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Bound. Layer Meteorol. 1988, 42, 55–78. [Google Scholar] [CrossRef]
- Högström, U. Review of some basic characteristics of the atmospheric surface layer. Bound. Layer Meteorol. 1996, 78, 215–246. [Google Scholar] [CrossRef]
- Kim, D.-J.; Lee, D.-I.; Kim, J.-J.; Park, M.-S.; Lee, S.-H. Development of a Building-Scale Meteorological Prediction System Including a Realistic Surface Heating. Atmosphere 2020, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Aida, M. Urban albedo as a function of the urban structure? A model experiment. Bound. Layer Meteorol. 1982, 23, 405–413. [Google Scholar] [CrossRef]
- Sievers, U.; Zdunkowski, W. A numerical simulation scheme for the albedo of city street canyons. Bound. Layer Meteorol. 1985, 33, 245–257. [Google Scholar] [CrossRef]
- Sailor, D.J.; Fan, H. Modeling the diurnal variability of effective albedo for cities. Atmos. Environ. 2002, 36, 713–725. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications—A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, H.; Park, S.-B.; Woo, J.-W.; Lee, D.-I.; Baik, J.-J. Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: Numerical investigation using a coupled WRF-VUCM model. Q. J. R. Meteorol. Soc. 2016, 142, 2562–2578. [Google Scholar] [CrossRef]
- Soux, A.; Voogt, J.A.; Oke, T.R. A Model to Calculate what a Remote Sensor ‘Sees’ of an Urban Surface. Bound. Layer Meteorol. 2004, 111, 109–132. [Google Scholar] [CrossRef]
- Cole, R.; Sturrock, N. The convective heat exchange at the external surface of buildings. Build. Environ. 1977, 12, 207–214. [Google Scholar] [CrossRef]
Variable | Symbol | Unit | |
---|---|---|---|
Meteorological forcing variables | Wind velocity components | m s−1 | |
Air temperature | K | ||
Downward direct shortwave radiation | W m−2 | ||
Downward diffuse shortwave radiation | W m−2 | ||
Downward longwave radiation | W m−2 | ||
Predicted variables | Friction velocity | m s−1 | |
Incident direct shortwave radiation | W m−2 | ||
Incident diffuse shortwave radiation | W m−2 | ||
Reflected shortwave radiation | W m−2 | ||
Net shortwave radiation | W m−2 | ||
Emitted longwave radiation | W m−2 | ||
Incident diffuse longwave radiation | W m−2 | ||
Reflected longwave radiation | W m−2 | ||
Net longwave radiatio | W m−2 | ||
Sensible heat flux | W m−2 | ||
Heat flux at subsurface layer | W m−2 | ||
Temperature at layer | K |
Parameter | Symbol | Unit |
---|---|---|
Roughness length for momentum | m | |
Roughness length for heat | m | |
Surface albedo | - | |
Surface emissivity | - | |
Thermal conductivity | W m−1 K−1 | |
Volumetric heat capacity | J m−3 K−1 | |
Thickness of each subsurface layer | m |
Parameter | Unit | Roof | Wall | Road |
---|---|---|---|---|
Roughness length for momentum () | m | 0.05 | - | 0.05 |
Roughness length for heat () | m | 0.00005 | - | 0.00005 |
Surface albedo () | - | 0.28 | 0.20 | 0.18 |
Surface emissivity () | - | 0.90 | 0.90 | 0.94 |
Thermal conductivity () | W m−1 K−1 | 0.90 | 0.70 | 0.79 |
Volumetric heat capacity () | J m−3 K−1 | 1.40 × 106 | 1.60 × 106 | 1.83 × 106 |
Thickness () | m | 0.5 | 0.4 | 1.0 |
East-West Direction | North-South Direction | Whole Area | ||
---|---|---|---|---|
Symmetric canyon | JW84 | 0.646 | 0.777 | 0.681 |
Lee18 | 0.647 (0.15) | 0.778 (0.12) | 0.682 (0.14) | |
MUSE | 0.645 (−0.07) | 0.777 (−0.01) | 0.681 (−0.06) | |
Asymmetric canyon | JW84 | 0.545 | 0.663 | 0.589 |
Lee18 | 0.546 (0.14) | 0.664 (0.09) | 0.590 (0.14) | |
MUSE | 0.545 (−0.08) | 0.663 (−0.01) | 0.589 (−0.07) |
15 June 1978 | 3 December 1977 | |||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | |
SZ85 | 0.015 | - | 0.020 | - | ||
TUF-3D | 0.009 | 0.007 | 0.022 | 0.014 | ||
MUSE | 0.002 (0.1%) | 0.006 (0.2%) | 0.016 (1.0%) | 0.009 (0.5%) | 0.014 (0.9%) | 0.013 (0.6%) |
West | East | South | North | Roof | Road | |
---|---|---|---|---|---|---|
MBE | −0.97 | −1.95 | −2.72 | −1.17 | −0.64 | 1.34 |
RMSE | 2.09 | 2.80 | 3.49 | 1.90 | 2.97 | 4.11 |
(RMSEs/RMSEu) | (1.66/1.27) | (2.13/1.82) | (3.01/1.78) | (1.72/0.81) | (1.40/2.62) | (2.81/3.01) |
R | 0.97 | 0.94 | 0.96 | 0.98 | 0.97 | 0.97 |
Net Radiation | Sensible Heat Flux | Storage Heat Flux | |
---|---|---|---|
MBE | −50.52 | −1.69 | −49.33 |
RMSE | 64.21 | 37.43 | 69.01 |
(RMSEs/RMSEu) | (59.34/24.51) | (20.55/31.29) | (53.67/43.39) |
R | 0.99 | 0.78 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-I.; Lee, S.-H. The Microscale Urban Surface Energy (MUSE) Model for Real Urban Application. Atmosphere 2020, 11, 1347. https://doi.org/10.3390/atmos11121347
Lee D-I, Lee S-H. The Microscale Urban Surface Energy (MUSE) Model for Real Urban Application. Atmosphere. 2020; 11(12):1347. https://doi.org/10.3390/atmos11121347
Chicago/Turabian StyleLee, Doo-Il, and Sang-Hyun Lee. 2020. "The Microscale Urban Surface Energy (MUSE) Model for Real Urban Application" Atmosphere 11, no. 12: 1347. https://doi.org/10.3390/atmos11121347
APA StyleLee, D. -I., & Lee, S. -H. (2020). The Microscale Urban Surface Energy (MUSE) Model for Real Urban Application. Atmosphere, 11(12), 1347. https://doi.org/10.3390/atmos11121347