Probing the Analytical Cancellation Factor of Short Scale Gravity Waves Using Na Lidar and Nightglow Data from the Andes Lidar Observatory
Abstract
:1. Introduction
2. Instrumentation and Methodology
3. Results
4. Discussion
5. Conclusions
- (1)
- We found that the modeled CF relationship underestimates the observations as shown in Figure 3. The discrepancies might have come from that dissipative and freely propagating waves co-exist with saturated waves (as hypothesised in the CF model). However, we have not separated waves by their kind in this study. That is due to that we did not measure waves simultaneously in different layers, which would be the only way to determine how the wave amplitude changers as it moves upwards. Another possible source of discrepancies could be introduced by the photochemical scheme used to model the cancellation factor. The model does not use realistic atomic oxygen data (see [21]) to obtain the CF magnitude. As the atomic oxygen density is affected by the season and the solar cycle activity, one way to improve the model and its agreement with the observations is to have the O density determined individually for each observation night to take into account the season and solar cycle conditions. Beyond that, we believe that the distribution of atomic oxygen with height in the presence of vertically propagating waves is influenced by a temperature gradient that affects the rate of chemical reactions of the nightglow emissions ([18]), which would also contribute to the discrepancies. By accounting for these discrepancy sources, it will be possible to improve the CF model for both studied nightglow layers.
- (2)
- Because the modeled CF underestimates the observed CF, we have performed a correction in the modeled CF curve by estimating the discrepancies from the observed wave data obtained from both and emissions. We used the weighted mean and weighted standard deviation to provide a measure of the discrepancy between modeled and observational CFs in Table 6.
- (3)
- We have adjusted the modeled CF by the observed CF weighted mean to obtain an empirical correction for the modeled CF for both and emissions. However, the observations still deviate by a factor of ∼2 for the modeled CF, showing that this simpler correction does not work for the hydroxyl emission. Therefore, another strategy must be devised to improve the model and the agreement between the model and the observations.
- (4)
- Despite these discrepancies, there are consistencies in the range km between the modeled and observed CF relationships based on the observed CF error bars that fall into the 95% confidence levels of the modeled CF, mainly for the layer.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walterscheid, R.L.; Schubert, G. Gravity wave fluxes of O3 and OH at the nightside mesopause. Geophys. Res. Lett. 1989, 16, 719–722. [Google Scholar] [CrossRef]
- Hickey, M.P.; Walterscheid, R.L.; Richards, P.G. Secular variations of atomic oxygen in the mesopause region induced by transient gravity wave packets. Geophys. Res. Lett. 2000, 27, 3599–3602. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, J.; Plane, J.; Jayachandran, P. Polar cap Sporadic-E: Part 2, modeling. J. Atmos. Sol. Terr. Phys. 2000, 62, 1169–1176. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Eccles, J.V. A Numerical Investigation on Tidal and Gravity Wave Contributions to the Summer Time Na Variations in the Midlatitude E Region. J. Geophys. Res. Space Phys. 2017, 122, 10577–10595. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Eccles, J.V.; Raizada, S. Investigation on the Distinct Nocturnal Secondary Sodium Layer Behavior Above 95 km in Winter and Summer Over Logan, UT (41.7∘ N, 112∘ W) and Arecibo Observatory, PR (18.3∘ N, 67∘ W). J. Geophys. Res. Space Phys. 2019, 124, 9610–9625. [Google Scholar] [CrossRef]
- Hecht, J.H.; Walterscheid, R.L.; Kane, T.J.; Gardner, C.S.; Tepley, C.A. Simultaneous nightglow and Na lidar observations at Arecibo during the AIDA-89 campaign. J. Atmos. Terr. Phys. 1993, 55, 409–423. [Google Scholar] [CrossRef]
- Hecht, J.H.; Walterscheid, R.L.; Ross, M.N. First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow. J. Geophys. Res. 1994, 99, 11449–11460. [Google Scholar] [CrossRef]
- Swenson, G.R.; Taylor, M.J.; Espy, P.J.; Gardner, C.; Tac, X. ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na wind/temperature lidar. Geophys. Res. Lett. 1995, 22, 2841–2844. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Mendillo, M.; Baumgardner, J.; Clark, R.R. Mesospheric gravity wave imaging at a subauroral site: First results from Millstone Hill. J. Geophys. Res. 2000, 105, 27119–27130. [Google Scholar] [CrossRef]
- Yu, J.R.; Latifi, H.; She, C.Y.; Yee, J.H.; Niciejewski, R.J. Simultaneous lidar and airglow temperature measurements in the mesopause region. Geophys. Res. Lett. 1991, 18, 1361–1363. [Google Scholar] [CrossRef] [Green Version]
- Hecht, J.H.; Walterscheid, R.L. Observations of the OH Meinel (6,2) and O2 atmospheric (0,1) Nightglow emissions from Maui during the ALOHA-90 Campaign. Geophys. Res. Lett. 1991, 18, 1341–1344. [Google Scholar] [CrossRef]
- Krassovsky, V.I. Infrasonic variations of OH-emission in upper-atmosphere. Ann. Geophys. 1972, 28, 739–746. [Google Scholar]
- Walterscheid, R.L.; Schubert, G.; Straus, J.M. A dynamical-chemical model of wave-driven fluctuations in the OH nightglow. J. Geophys. Res. Space Phys. 1987, 92, 1241–1254. [Google Scholar] [CrossRef]
- Hickey, M.P. Effects of eddy viscosity and thermal conduction and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow. J. Geophys. Res. Space Phys. 1988, 93, 4077–4088. [Google Scholar] [CrossRef] [Green Version]
- Tarasick, D.W.; Shepherd, G.G. Effects of gravity waves on complex airglow chemistries: 2. OH emission. J. Geophys. Res. Space Phys. 1992, 97, 3195–3208. [Google Scholar] [CrossRef]
- Makhlouf, U.B.; Picard, R.H.; Winick, J.R. Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow. J. Geophys. Res. Atmos. 1995, 100, 11289–11311. [Google Scholar] [CrossRef]
- Zhang, S.; Wiens, R.; Shepherd, G. Gravity waves from O2 nightglow during the AIDA ’89 campaign II: Numerical modeling of the emission rate/temperature ratio, η. J. Atmos. Terr. Phys. 1993, 55, 377–395. [Google Scholar] [CrossRef]
- Swenson, G.R.; Gardner, C.S. Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves. J. Geophys. Res. 1998, 103, 6271–6294. [Google Scholar] [CrossRef]
- Swenson, G.R.; Liu, A.Z. A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow. Geophys. Res. Lett. 1998, 25, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.Z.; Swenson, G.R. A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves. J. Geophys. Res. Atmos. 2003, 108, 4151. [Google Scholar] [CrossRef] [Green Version]
- Vargas, F.; Swenson, G.; Liu, A.; Gobbi, D. O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Hapgood, M.; Rothwell, P. Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emissions. Planet. Space Sci. 1987, 35, 413–427. [Google Scholar] [CrossRef]
- Swenson, G.R.; Mende, S.B. OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT. Geophys. Res. Lett. 1994, 21, 2239–2242. [Google Scholar] [CrossRef]
- Vincent, R. Gravity-wave motions in the mesosphere. J. Atmos. Terr. Phys. 1984, 46, 119–128. [Google Scholar] [CrossRef]
- Fritts, D.C.; Lu, W. Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part II: Parameterization of Wave Forcing and Variability. J. Atmos. Sci. 1993, 50, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Vargas, F. Uncertainties in gravity wave parameters, momentum fluxes, and flux divergences estimated from multi-layer measurements of mesospheric nightglow layers. Adv. Space Res. 2019, 63, 967–985. [Google Scholar] [CrossRef]
- Krueger, D.A.; She, C.Y.; Yuan, T. Retrieving mesopause temperature and line-of-sight wind from full-diurnal-cycle Na lidar observations. Appl. Opt. 2015, 54, 9469–9489. [Google Scholar] [CrossRef]
- She, C.Y.; Yu, J.R. Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region. Geophys. Res. Lett. 1994, 21, 1771–1774. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. (Space Phys.) 2002, 107, 1468. [Google Scholar] [CrossRef]
- Garcia, F.J.; Taylor, M.J.; Kelley, M.C. Two-dimensional spectral analysis of mesospheric airglow image data. Appl. Opt. 1997, 36, 7374–7385. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.; Diaconis, P. On the histogram as a density estimator: L2 theory. Z. Wahrscheinlichkeitstheorie Verw Gebiete 1981, 57, 453–476. [Google Scholar] [CrossRef] [Green Version]
- Hickey, M.P.; Yu, Y. A full-wave investigation of the use of a “cancellation factor” in gravity wave-OH airglow interaction studies. J. Geophys. Res. (Space Phys.) 2005, 110, A01301. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Setvák, M.; Beletsky, Y.; Baumgardner, J.; Mendillo, M. Mesospheric Gravity Wave Momentum Flux Associated With a Large Thunderstorm Complex. J. Geophys. Res. Atmos. 2020, 125, e2020JD033381. [Google Scholar] [CrossRef]
Filter | (nm) | FWHM (nm) | Exp.Time (s) |
---|---|---|---|
551.0 | 3 | 90 | |
557.7 | 3 | 90 | |
630.0 | 3 | 75 | |
840.0 | 20 | 60 | |
866.0 | 7 | 45 |
Year | Month | Day | # Nights | # AGW () | # AGW |
---|---|---|---|---|---|
2015 | Jan–Feb | 27–30, 02 | 5 | 2355 | 915 |
2015 | April | 17–25 | 8 | 3515 | 86 |
2015 | July | 14–25 | 11 | 2890 | 2116 |
2015 | November | 01-08 | 7 | 200 | 31 |
4 campaigns | 31 | 8960 | 3145 | ||
2016 | Feb–Mar | 25–29, 01–15 | 19 | 4435 | 885 |
2016 | June | 06–11 | 6 | 2710 | 1505 |
2016 | Oct–Nov | 23–31, 01–09 | 17 | 225 | 60 |
3 campaigns | 42 | 7370 | 2450 | ||
2017 | April | 21–29 | 8 | 2060 | 2405 |
2017 | November | 20–28 | 9 | 95 | 60 |
2017 | December | 12–22 | 10 | 515 | 70 |
3 campaigns | 27 | 2670 | 2535 | ||
Total | 10 campaigns | 100 | 19,000 | 8130 |
Year | Month, Day | # Nights | # Hours | Nights with Winds (U ,V ) | Average CPS |
---|---|---|---|---|---|
2015 | Jan–Feb (16–31, 01–02) | 16 | 96.4 | 5 | 559 |
2015 | April (15–29) | 14 | 101.9 | 8 | 556 |
2015 | July (14–25) | 11 | 65.3 | 11 | 554 |
2015 | November (27–30, 01–08) | 8 | 69.6 | 7 | 700 |
2016 | Feb–Mar (25–29, 01–15) | 19 | 96.7 | 19 | 540 |
2016 | June (06–11) | 6 | 66.0 | 6 | 760 |
2016 | Oct-Nov (23–31, 01–04) | 17 | 91.4 | 17 | 582 |
2017 | April (21–29) | 8 | 50.8 | 8 | 609 |
2017 | November (20–28) | 9 | 57.0 | 9 | 299 |
2017 | December (12–24) | 12 | 70.7 | 10 | 213 |
Total | 10 campaigns | 155 | 1043.9 | 100 | 7174 |
Emission | z (km) | CF Magnitude | (km) | (min) | ||
---|---|---|---|---|---|---|
88 | ≥ 3 | ≤ 10 | ≥ 12 | |||
95 | ≥ 4 | ≤ 10 | ≥ 12 |
Years | # Nights | # Nights | ||
---|---|---|---|---|
2015 | 94 | 43 | 11 | 9 |
2016 | 113 | 50 | 19 | 9 |
2017 | 30 | 98 | 4 | 5 |
Total | 237 | 191 | 34 | 23 |
Year | ||||
---|---|---|---|---|
2015 | 5.91 | 0.26 | 4.91 | 0.13 |
2016 | 5.48 | 0.29 | 4.98 | 0.07 |
2017 | 5.03 | 0.44 | 4.76 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, F.; Fuentes, J.; Vega, P.; Navarro, L.; Swenson, G. Probing the Analytical Cancellation Factor of Short Scale Gravity Waves Using Na Lidar and Nightglow Data from the Andes Lidar Observatory. Atmosphere 2020, 11, 1311. https://doi.org/10.3390/atmos11121311
Vargas F, Fuentes J, Vega P, Navarro L, Swenson G. Probing the Analytical Cancellation Factor of Short Scale Gravity Waves Using Na Lidar and Nightglow Data from the Andes Lidar Observatory. Atmosphere. 2020; 11(12):1311. https://doi.org/10.3390/atmos11121311
Chicago/Turabian StyleVargas, Fabio, Javier Fuentes, Pedro Vega, Luis Navarro, and Gary Swenson. 2020. "Probing the Analytical Cancellation Factor of Short Scale Gravity Waves Using Na Lidar and Nightglow Data from the Andes Lidar Observatory" Atmosphere 11, no. 12: 1311. https://doi.org/10.3390/atmos11121311
APA StyleVargas, F., Fuentes, J., Vega, P., Navarro, L., & Swenson, G. (2020). Probing the Analytical Cancellation Factor of Short Scale Gravity Waves Using Na Lidar and Nightglow Data from the Andes Lidar Observatory. Atmosphere, 11(12), 1311. https://doi.org/10.3390/atmos11121311